遗传算法在鲁棒有源滤波器设计中的应用

M. Lovay, G. Peretti, E. Romero
{"title":"遗传算法在鲁棒有源滤波器设计中的应用","authors":"M. Lovay, G. Peretti, E. Romero","doi":"10.1109/EAMTA.2015.7237369","DOIUrl":null,"url":null,"abstract":"This paper presents a genetic algorithm (GA) based method for designing two second-order active filters, proposed as cases of study. The GA must determine the values of the passive components (resistors and capacitors) of each filter in order to obtain a configuration that minimizes the sensitivity to variations of the same and also presents design errors minor to a defined maximum value, with respect to certain specifications. The optimization problem to be addressed by the GA is a multiobjective optimization problem. In both cases of study, the algorithm runs considering two possible scenarios with respect to the component values. The results show that the GA can get in both situations filter configurations that meet the established criteria.","PeriodicalId":101792,"journal":{"name":"2015 Argentine School of Micro-Nanoelectronics, Technology and Applications (EAMTA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Application of genetic algorithms in the design of robust active filters\",\"authors\":\"M. Lovay, G. Peretti, E. Romero\",\"doi\":\"10.1109/EAMTA.2015.7237369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a genetic algorithm (GA) based method for designing two second-order active filters, proposed as cases of study. The GA must determine the values of the passive components (resistors and capacitors) of each filter in order to obtain a configuration that minimizes the sensitivity to variations of the same and also presents design errors minor to a defined maximum value, with respect to certain specifications. The optimization problem to be addressed by the GA is a multiobjective optimization problem. In both cases of study, the algorithm runs considering two possible scenarios with respect to the component values. The results show that the GA can get in both situations filter configurations that meet the established criteria.\",\"PeriodicalId\":101792,\"journal\":{\"name\":\"2015 Argentine School of Micro-Nanoelectronics, Technology and Applications (EAMTA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Argentine School of Micro-Nanoelectronics, Technology and Applications (EAMTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAMTA.2015.7237369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Argentine School of Micro-Nanoelectronics, Technology and Applications (EAMTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAMTA.2015.7237369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于遗传算法的二阶有源滤波器设计方法,并以实例进行了研究。遗传算法必须确定每个滤波器的无源元件(电阻器和电容器)的值,以便获得一种配置,使其对相同变化的灵敏度最小化,并根据某些规格提供最小到定义最大值的设计误差。遗传算法要解决的优化问题是一个多目标优化问题。在这两种情况下的研究,算法运行考虑两种可能的情况,相对于组件值。结果表明,在这两种情况下,遗传算法都能得到满足既定条件的滤波器配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of genetic algorithms in the design of robust active filters
This paper presents a genetic algorithm (GA) based method for designing two second-order active filters, proposed as cases of study. The GA must determine the values of the passive components (resistors and capacitors) of each filter in order to obtain a configuration that minimizes the sensitivity to variations of the same and also presents design errors minor to a defined maximum value, with respect to certain specifications. The optimization problem to be addressed by the GA is a multiobjective optimization problem. In both cases of study, the algorithm runs considering two possible scenarios with respect to the component values. The results show that the GA can get in both situations filter configurations that meet the established criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信