基于数学工具的心率变异性生成

G. Georgieva-Tsaneva
{"title":"基于数学工具的心率变异性生成","authors":"G. Georgieva-Tsaneva","doi":"10.1145/3274005.3274035","DOIUrl":null,"url":null,"abstract":"The article presents an algorithm for generating sysnthetic Heart Rate Variability (HRV) data using mathematical tools. The generated data includes the low frequency Mayer wave, the effect of Respiratory Sinus Arrhythmia on the high frequency spectrum and the influence of thermoregulation, physical activity, etc. factors in the very low frequency range. The algorithm uses a wavelet transformation to convert the generated data into the time domain. The generated HRV series has been investigated in the time and frequency domains. The results show that the generated HRV data corresponds to a healthy individual. The algorithm can be used to evaluate the diagnostic capabilities of real HRV sequences derived from patient electrocardiographic data.","PeriodicalId":152033,"journal":{"name":"Proceedings of the 19th International Conference on Computer Systems and Technologies","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Heart Rate Variability Generating Based on Matematical Tools\",\"authors\":\"G. Georgieva-Tsaneva\",\"doi\":\"10.1145/3274005.3274035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents an algorithm for generating sysnthetic Heart Rate Variability (HRV) data using mathematical tools. The generated data includes the low frequency Mayer wave, the effect of Respiratory Sinus Arrhythmia on the high frequency spectrum and the influence of thermoregulation, physical activity, etc. factors in the very low frequency range. The algorithm uses a wavelet transformation to convert the generated data into the time domain. The generated HRV series has been investigated in the time and frequency domains. The results show that the generated HRV data corresponds to a healthy individual. The algorithm can be used to evaluate the diagnostic capabilities of real HRV sequences derived from patient electrocardiographic data.\",\"PeriodicalId\":152033,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Computer Systems and Technologies\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Computer Systems and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3274005.3274035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Computer Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274005.3274035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种利用数学工具生成合成心率变异性(HRV)数据的算法。生成的数据包括低频Mayer波、高频频谱上呼吸窦性心律失常的影响以及极低频范围内体温调节、身体活动等因素的影响。该算法使用小波变换将生成的数据转换到时域。在时域和频域对生成的HRV序列进行了研究。结果表明,生成的HRV数据与健康个体相对应。该算法可用于评估由患者心电图数据得出的真实HRV序列的诊断能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heart Rate Variability Generating Based on Matematical Tools
The article presents an algorithm for generating sysnthetic Heart Rate Variability (HRV) data using mathematical tools. The generated data includes the low frequency Mayer wave, the effect of Respiratory Sinus Arrhythmia on the high frequency spectrum and the influence of thermoregulation, physical activity, etc. factors in the very low frequency range. The algorithm uses a wavelet transformation to convert the generated data into the time domain. The generated HRV series has been investigated in the time and frequency domains. The results show that the generated HRV data corresponds to a healthy individual. The algorithm can be used to evaluate the diagnostic capabilities of real HRV sequences derived from patient electrocardiographic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信