{"title":"基于遗传算法-支持向量机的手势研究","authors":"Yulin Gong, Mingjia Hu, Xiaojuan Chen, Yue Sun","doi":"10.1109/ICIIBMS46890.2019.8991504","DOIUrl":null,"url":null,"abstract":"Surface electromyography (sEMG) is a kind of weak electrical signal generated by muscle activity, which contains information of gesture and is widely used in prosthetic control, rehabilitation and medical treatment. The difference between different motion patterns can be reflected by the different sEMG characteristics, so the recognition of human motion can be studied. Four time-domain features including absolute mean value, waveform length, zero-crossing number and root mean square value were extracted from the double Myo arm-ring data set in Ninapro benchmark database. Classification and identification were performed by using the Support Vector Machine (SVM) optimized by Genetic Algorithms (GA). Experimental results showed that the optimized SVM classification had a better effect.","PeriodicalId":444797,"journal":{"name":"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Research on Gesture Based on Genetic Algorithms - Support Vector Machine\",\"authors\":\"Yulin Gong, Mingjia Hu, Xiaojuan Chen, Yue Sun\",\"doi\":\"10.1109/ICIIBMS46890.2019.8991504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface electromyography (sEMG) is a kind of weak electrical signal generated by muscle activity, which contains information of gesture and is widely used in prosthetic control, rehabilitation and medical treatment. The difference between different motion patterns can be reflected by the different sEMG characteristics, so the recognition of human motion can be studied. Four time-domain features including absolute mean value, waveform length, zero-crossing number and root mean square value were extracted from the double Myo arm-ring data set in Ninapro benchmark database. Classification and identification were performed by using the Support Vector Machine (SVM) optimized by Genetic Algorithms (GA). Experimental results showed that the optimized SVM classification had a better effect.\",\"PeriodicalId\":444797,\"journal\":{\"name\":\"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIBMS46890.2019.8991504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS46890.2019.8991504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Gesture Based on Genetic Algorithms - Support Vector Machine
Surface electromyography (sEMG) is a kind of weak electrical signal generated by muscle activity, which contains information of gesture and is widely used in prosthetic control, rehabilitation and medical treatment. The difference between different motion patterns can be reflected by the different sEMG characteristics, so the recognition of human motion can be studied. Four time-domain features including absolute mean value, waveform length, zero-crossing number and root mean square value were extracted from the double Myo arm-ring data set in Ninapro benchmark database. Classification and identification were performed by using the Support Vector Machine (SVM) optimized by Genetic Algorithms (GA). Experimental results showed that the optimized SVM classification had a better effect.