有效和安全电路的时序弹性

Grace Li Zhang, M. Brunner, Bing Li, G. Sigl, Ulf Schlichtmann
{"title":"有效和安全电路的时序弹性","authors":"Grace Li Zhang, M. Brunner, Bing Li, G. Sigl, Ulf Schlichtmann","doi":"10.1109/ASP-DAC47756.2020.9045352","DOIUrl":null,"url":null,"abstract":"In this paper, we will cover several techniques that can enhance the resilience of timing of digital circuits. Using post-silicon tuning components, the clock arrival times at flip-flops can be modified after manufacturing to balance delays between flip-flops. The actual delay properties of flip-flops will be examined to exploit the natural flexibility of such components. Wave-pipelining paths spanning several flip-flop stages can be integrated into a synchronous design to improve the circuit performance and to reduce area. In addition, with this technique, it cannot be taken for granted anymore that all the combinational paths in a circuit work with respect to one clock period. Therefore, a netlist alone does not represent all the design information. This feature enables the potential to embed wave-pipelining paths into a circuit to increase the complexity of reverse engineering. In order to replicate a design, attackers therefore have to identify the locations of the wave-pipelining paths, in addition to the netlist extracted from reverse engineering. Therefore, the security of the circuit against counterfeiting can be improved.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timing Resilience for Efficient and Secure Circuits\",\"authors\":\"Grace Li Zhang, M. Brunner, Bing Li, G. Sigl, Ulf Schlichtmann\",\"doi\":\"10.1109/ASP-DAC47756.2020.9045352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will cover several techniques that can enhance the resilience of timing of digital circuits. Using post-silicon tuning components, the clock arrival times at flip-flops can be modified after manufacturing to balance delays between flip-flops. The actual delay properties of flip-flops will be examined to exploit the natural flexibility of such components. Wave-pipelining paths spanning several flip-flop stages can be integrated into a synchronous design to improve the circuit performance and to reduce area. In addition, with this technique, it cannot be taken for granted anymore that all the combinational paths in a circuit work with respect to one clock period. Therefore, a netlist alone does not represent all the design information. This feature enables the potential to embed wave-pipelining paths into a circuit to increase the complexity of reverse engineering. In order to replicate a design, attackers therefore have to identify the locations of the wave-pipelining paths, in addition to the netlist extracted from reverse engineering. Therefore, the security of the circuit against counterfeiting can be improved.\",\"PeriodicalId\":125112,\"journal\":{\"name\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC47756.2020.9045352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将介绍几种可以增强数字电路时序弹性的技术。使用后硅调谐元件,触发器的时钟到达时间可以在制造后修改,以平衡触发器之间的延迟。我们将研究人字拖的实际延迟特性,以利用这些元件的自然灵活性。跨越多个触发器级的波管道路径可以集成到一个同步设计中,以提高电路性能并减少面积。此外,使用这种技术,不能再想当然地认为电路中的所有组合路径都相对于一个时钟周期工作。因此,网表本身并不能代表所有的设计信息。这一特性使嵌入波管道路径到电路的潜力,以增加逆向工程的复杂性。为了复制设计,攻击者因此除了从逆向工程中提取的网络列表外,还必须确定波浪管道路径的位置。因此,可以提高电路的防伪安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Timing Resilience for Efficient and Secure Circuits
In this paper, we will cover several techniques that can enhance the resilience of timing of digital circuits. Using post-silicon tuning components, the clock arrival times at flip-flops can be modified after manufacturing to balance delays between flip-flops. The actual delay properties of flip-flops will be examined to exploit the natural flexibility of such components. Wave-pipelining paths spanning several flip-flop stages can be integrated into a synchronous design to improve the circuit performance and to reduce area. In addition, with this technique, it cannot be taken for granted anymore that all the combinational paths in a circuit work with respect to one clock period. Therefore, a netlist alone does not represent all the design information. This feature enables the potential to embed wave-pipelining paths into a circuit to increase the complexity of reverse engineering. In order to replicate a design, attackers therefore have to identify the locations of the wave-pipelining paths, in addition to the netlist extracted from reverse engineering. Therefore, the security of the circuit against counterfeiting can be improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信