{"title":"基于体表肌电信号的下肢康复训练关键技术研究","authors":"Liye Ren, Chen Wang, Ping Feng","doi":"10.1145/3498731.3498745","DOIUrl":null,"url":null,"abstract":"In this paper, the Support Vector Machine (SVM) was introduced into the pattern recognition of human lower limb movements, and a classification method based on multi-core Support Vector Machine was constructed. Through motion pattern recognition, a model representing the relationship between motion and surface EMG signals was established, which provided technical Support for the rehabilitation and diagnosis of patients with lower limb hemiplegia.","PeriodicalId":166893,"journal":{"name":"Proceedings of the 2021 10th International Conference on Bioinformatics and Biomedical Science","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Key Techniques of Lower Limb Rehabilitation Training Based on Human Surface EMG Signal\",\"authors\":\"Liye Ren, Chen Wang, Ping Feng\",\"doi\":\"10.1145/3498731.3498745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Support Vector Machine (SVM) was introduced into the pattern recognition of human lower limb movements, and a classification method based on multi-core Support Vector Machine was constructed. Through motion pattern recognition, a model representing the relationship between motion and surface EMG signals was established, which provided technical Support for the rehabilitation and diagnosis of patients with lower limb hemiplegia.\",\"PeriodicalId\":166893,\"journal\":{\"name\":\"Proceedings of the 2021 10th International Conference on Bioinformatics and Biomedical Science\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 10th International Conference on Bioinformatics and Biomedical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3498731.3498745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 10th International Conference on Bioinformatics and Biomedical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3498731.3498745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Key Techniques of Lower Limb Rehabilitation Training Based on Human Surface EMG Signal
In this paper, the Support Vector Machine (SVM) was introduced into the pattern recognition of human lower limb movements, and a classification method based on multi-core Support Vector Machine was constructed. Through motion pattern recognition, a model representing the relationship between motion and surface EMG signals was established, which provided technical Support for the rehabilitation and diagnosis of patients with lower limb hemiplegia.