{"title":"基于神经网络的火电厂给水泵建模","authors":"I. Nikolic, Vesna N. Petkovski, G. Kvascev","doi":"10.1109/NEUREL.2014.7011467","DOIUrl":null,"url":null,"abstract":"Obtaining an accurate model of a real-world system using linear systems theory can prove to be a complex task due to the nonlinear characteristics that systems exhibit. Neural networks have the ability to reproduce the complex nonlinear relations which makes them a useful tool in system identification and modeling. The purpose of this paper is to obtain the model of a thermal power plant feedwater pump in order to test various control approaches. The neural network used in this paper is a multi-layer feed-forward network. The comparison of the results obtained by using this approach with the results obtained from a mathematical model confirms that the neural network-based model is a better approximation of the observed system.","PeriodicalId":402208,"journal":{"name":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural network-based modeling of a thermal power plant feedwater pump\",\"authors\":\"I. Nikolic, Vesna N. Petkovski, G. Kvascev\",\"doi\":\"10.1109/NEUREL.2014.7011467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obtaining an accurate model of a real-world system using linear systems theory can prove to be a complex task due to the nonlinear characteristics that systems exhibit. Neural networks have the ability to reproduce the complex nonlinear relations which makes them a useful tool in system identification and modeling. The purpose of this paper is to obtain the model of a thermal power plant feedwater pump in order to test various control approaches. The neural network used in this paper is a multi-layer feed-forward network. The comparison of the results obtained by using this approach with the results obtained from a mathematical model confirms that the neural network-based model is a better approximation of the observed system.\",\"PeriodicalId\":402208,\"journal\":{\"name\":\"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2014.7011467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2014.7011467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural network-based modeling of a thermal power plant feedwater pump
Obtaining an accurate model of a real-world system using linear systems theory can prove to be a complex task due to the nonlinear characteristics that systems exhibit. Neural networks have the ability to reproduce the complex nonlinear relations which makes them a useful tool in system identification and modeling. The purpose of this paper is to obtain the model of a thermal power plant feedwater pump in order to test various control approaches. The neural network used in this paper is a multi-layer feed-forward network. The comparison of the results obtained by using this approach with the results obtained from a mathematical model confirms that the neural network-based model is a better approximation of the observed system.