利用激光雷达里程计和细胞伪距进行位姿估计

Joe J. Khalife, S. Ragothaman, Z. Kassas
{"title":"利用激光雷达里程计和细胞伪距进行位姿估计","authors":"Joe J. Khalife, S. Ragothaman, Z. Kassas","doi":"10.1109/IVS.2017.7995956","DOIUrl":null,"url":null,"abstract":"A pose estimation framework by fusing light detection and ranging (lidar) odometry measurements and cellular pseudoranges using an extended Kalman filter is proposed. Iterative closest point (ICP) is used to solve for the relative pose between lidar scans. A maximum likelihood estimator is developed for lidar scan registration. The proposed framework works with few ICP iterations; hence, can be used for real-time applications. The framework is tested experimentally, and it is demonstrated that the two-dimensional position root mean square error obtained with ICP only can be reduced by 93.58% by fusing lidar odometry and cellular pseudoranges.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Pose estimation with lidar odometry and cellular pseudoranges\",\"authors\":\"Joe J. Khalife, S. Ragothaman, Z. Kassas\",\"doi\":\"10.1109/IVS.2017.7995956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pose estimation framework by fusing light detection and ranging (lidar) odometry measurements and cellular pseudoranges using an extended Kalman filter is proposed. Iterative closest point (ICP) is used to solve for the relative pose between lidar scans. A maximum likelihood estimator is developed for lidar scan registration. The proposed framework works with few ICP iterations; hence, can be used for real-time applications. The framework is tested experimentally, and it is demonstrated that the two-dimensional position root mean square error obtained with ICP only can be reduced by 93.58% by fusing lidar odometry and cellular pseudoranges.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种融合光探测和测距(激光雷达)测量和扩展卡尔曼滤波的元胞伪距的位姿估计框架。采用迭代最近点(ICP)法求解激光雷达扫描之间的相对位姿。提出了一种用于激光雷达扫描配准的极大似然估计方法。建议的框架只需要很少的ICP迭代;因此,可用于实时应用程序。实验结果表明,通过融合激光雷达测程和细胞伪距,仅用ICP获得的二维位置均方根误差降低了93.58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pose estimation with lidar odometry and cellular pseudoranges
A pose estimation framework by fusing light detection and ranging (lidar) odometry measurements and cellular pseudoranges using an extended Kalman filter is proposed. Iterative closest point (ICP) is used to solve for the relative pose between lidar scans. A maximum likelihood estimator is developed for lidar scan registration. The proposed framework works with few ICP iterations; hence, can be used for real-time applications. The framework is tested experimentally, and it is demonstrated that the two-dimensional position root mean square error obtained with ICP only can be reduced by 93.58% by fusing lidar odometry and cellular pseudoranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信