用数据挖掘方法描述蜜蜂种群的季节特征

F. Maciel, Antonio Rafael Braga, Rhaniel M. Xavier, T. C. D. Silva, B. Freitas, D. Gomes
{"title":"用数据挖掘方法描述蜜蜂种群的季节特征","authors":"F. Maciel, Antonio Rafael Braga, Rhaniel M. Xavier, T. C. D. Silva, B. Freitas, D. Gomes","doi":"10.1145/3229345.3229386","DOIUrl":null,"url":null,"abstract":"Among the agricultural crops used for human consumption, 75% depends on pollination. As the principal pollinating agent, bees are essential for the food production for humans and the ecosystems sustainability. However, a combination of habitat destruction, climate change and exposure to pesticides and pathogens has led to a significant decrease in bee population. Here we propose a method to recognize status patterns of Apis mellifera colonies through the application of data mining techniques. Using a real dataset from the HiveTool.net containing Apis mellifera temperature, humidity and weight data, we identified 3 status patterns in the observed hive. Our results suggest that the recognized patterns are consistent with a honey bee colony life cycle. Based on the found patterns, we propose a high accuracy classification model capable of automatically identifying colony status for new samples.","PeriodicalId":284178,"journal":{"name":"Proceedings of the XIV Brazilian Symposium on Information Systems","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Mining to Characterize Seasonal Patterns of Apis mellifera Honey Bee Colonies\",\"authors\":\"F. Maciel, Antonio Rafael Braga, Rhaniel M. Xavier, T. C. D. Silva, B. Freitas, D. Gomes\",\"doi\":\"10.1145/3229345.3229386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the agricultural crops used for human consumption, 75% depends on pollination. As the principal pollinating agent, bees are essential for the food production for humans and the ecosystems sustainability. However, a combination of habitat destruction, climate change and exposure to pesticides and pathogens has led to a significant decrease in bee population. Here we propose a method to recognize status patterns of Apis mellifera colonies through the application of data mining techniques. Using a real dataset from the HiveTool.net containing Apis mellifera temperature, humidity and weight data, we identified 3 status patterns in the observed hive. Our results suggest that the recognized patterns are consistent with a honey bee colony life cycle. Based on the found patterns, we propose a high accuracy classification model capable of automatically identifying colony status for new samples.\",\"PeriodicalId\":284178,\"journal\":{\"name\":\"Proceedings of the XIV Brazilian Symposium on Information Systems\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the XIV Brazilian Symposium on Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3229345.3229386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the XIV Brazilian Symposium on Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3229345.3229386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在供人类食用的农作物中,75%依赖于授粉。蜜蜂作为主要的传粉媒介,对人类的粮食生产和生态系统的可持续性至关重要。然而,栖息地的破坏、气候变化以及暴露于杀虫剂和病原体的综合作用导致了蜜蜂种群的显著减少。本文提出了一种应用数据挖掘技术识别蜜蜂群体状态模式的方法。利用HiveTool.net上包含蜜蜂温度、湿度和重量数据的真实数据集,我们确定了观察到的蜂巢的3种状态模式。我们的研究结果表明,识别的模式与蜂群的生命周期是一致的。基于发现的模式,我们提出了一个能够自动识别新样本群体状态的高精度分类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Mining to Characterize Seasonal Patterns of Apis mellifera Honey Bee Colonies
Among the agricultural crops used for human consumption, 75% depends on pollination. As the principal pollinating agent, bees are essential for the food production for humans and the ecosystems sustainability. However, a combination of habitat destruction, climate change and exposure to pesticides and pathogens has led to a significant decrease in bee population. Here we propose a method to recognize status patterns of Apis mellifera colonies through the application of data mining techniques. Using a real dataset from the HiveTool.net containing Apis mellifera temperature, humidity and weight data, we identified 3 status patterns in the observed hive. Our results suggest that the recognized patterns are consistent with a honey bee colony life cycle. Based on the found patterns, we propose a high accuracy classification model capable of automatically identifying colony status for new samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信