{"title":"基于深度学习的桃黄单胞菌叶病鉴定","authors":"Keke Zhang , Zheyuan Xu , Shoukun Dong , Canjian Cen , Qiufeng Wu","doi":"10.1016/j.eaef.2019.05.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper utilizes convolutional neural network (CNN) to identify peach leaf disease infected by </span>Xanthomonas campestris<span>. Transfer learning was used to fine-tune AlexNet<span>. Feature visualization from the trained CNN indicate the excellent ability of self-learned features. Three comparative experiments were conducted to compare the performance of CNN with the traditional classification methods including Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Back Propagation (BP) neural network in identifying peach leaves. Confusion matrix of each method displays that CNN can identify the peach leaves affected by Xanthomonas campestris with the accuracy of 100%. ROC (Receiver Operating Characteristic) curves and AUC (Area Under ROC Curve) values, an overall performance measurement, show that CNN achieves higher performance with AUC value of 0.9999. The test of significant experiment shows that CNN is significantly superior to the other three mentioned methods, which the p-values is 0.0343 (vs.SVM), 0.0181 (vs.KNN) and 0.0292 (vs.BP). In a word, CNN is superior to the state-of-the-art in identifying diseased peach leaves.</span></span></p></div>","PeriodicalId":38965,"journal":{"name":"Engineering in Agriculture, Environment and Food","volume":"12 4","pages":"Pages 388-396"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.eaef.2019.05.001","citationCount":"18","resultStr":"{\"title\":\"Identification of peach leaf disease infected by Xanthomonas campestris with deep learning\",\"authors\":\"Keke Zhang , Zheyuan Xu , Shoukun Dong , Canjian Cen , Qiufeng Wu\",\"doi\":\"10.1016/j.eaef.2019.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper utilizes convolutional neural network (CNN) to identify peach leaf disease infected by </span>Xanthomonas campestris<span>. Transfer learning was used to fine-tune AlexNet<span>. Feature visualization from the trained CNN indicate the excellent ability of self-learned features. Three comparative experiments were conducted to compare the performance of CNN with the traditional classification methods including Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Back Propagation (BP) neural network in identifying peach leaves. Confusion matrix of each method displays that CNN can identify the peach leaves affected by Xanthomonas campestris with the accuracy of 100%. ROC (Receiver Operating Characteristic) curves and AUC (Area Under ROC Curve) values, an overall performance measurement, show that CNN achieves higher performance with AUC value of 0.9999. The test of significant experiment shows that CNN is significantly superior to the other three mentioned methods, which the p-values is 0.0343 (vs.SVM), 0.0181 (vs.KNN) and 0.0292 (vs.BP). In a word, CNN is superior to the state-of-the-art in identifying diseased peach leaves.</span></span></p></div>\",\"PeriodicalId\":38965,\"journal\":{\"name\":\"Engineering in Agriculture, Environment and Food\",\"volume\":\"12 4\",\"pages\":\"Pages 388-396\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.eaef.2019.05.001\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering in Agriculture, Environment and Food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1881836618300193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Agriculture, Environment and Food","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1881836618300193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Identification of peach leaf disease infected by Xanthomonas campestris with deep learning
This paper utilizes convolutional neural network (CNN) to identify peach leaf disease infected by Xanthomonas campestris. Transfer learning was used to fine-tune AlexNet. Feature visualization from the trained CNN indicate the excellent ability of self-learned features. Three comparative experiments were conducted to compare the performance of CNN with the traditional classification methods including Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Back Propagation (BP) neural network in identifying peach leaves. Confusion matrix of each method displays that CNN can identify the peach leaves affected by Xanthomonas campestris with the accuracy of 100%. ROC (Receiver Operating Characteristic) curves and AUC (Area Under ROC Curve) values, an overall performance measurement, show that CNN achieves higher performance with AUC value of 0.9999. The test of significant experiment shows that CNN is significantly superior to the other three mentioned methods, which the p-values is 0.0343 (vs.SVM), 0.0181 (vs.KNN) and 0.0292 (vs.BP). In a word, CNN is superior to the state-of-the-art in identifying diseased peach leaves.
期刊介绍:
Engineering in Agriculture, Environment and Food (EAEF) is devoted to the advancement and dissemination of scientific and technical knowledge concerning agricultural machinery, tillage, terramechanics, precision farming, agricultural instrumentation, sensors, bio-robotics, systems automation, processing of agricultural products and foods, quality evaluation and food safety, waste treatment and management, environmental control, energy utilization agricultural systems engineering, bio-informatics, computer simulation, computational mechanics, farm work systems and mechanized cropping. It is an international English E-journal published and distributed by the Asian Agricultural and Biological Engineering Association (AABEA). Authors should submit the manuscript file written by MS Word through a web site. The manuscript must be approved by the author''s organization prior to submission if required. Contact the societies which you belong to, if you have any question on manuscript submission or on the Journal EAEF.