彩虹顶点连接数的正方形,胶水,中间和分割图的刷图

H. Helmi, Brella Glysentia Vilgalita, F. Fran, D. R. Putra
{"title":"彩虹顶点连接数的正方形,胶水,中间和分割图的刷图","authors":"H. Helmi, Brella Glysentia Vilgalita, F. Fran, D. R. Putra","doi":"10.1063/5.0017092","DOIUrl":null,"url":null,"abstract":"A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. Let n is integers at least 2, Bn is a brush graph with 2n vertices. In this paper, we determine the rainbow vertex connection number of square, glue, middle and splitting graph of brush graph.","PeriodicalId":309025,"journal":{"name":"THE 4TH INDOMS INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATION (IICMA 2019)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainbow vertex connection number of square, glue, middle and splitting graph of brush graph\",\"authors\":\"H. Helmi, Brella Glysentia Vilgalita, F. Fran, D. R. Putra\",\"doi\":\"10.1063/5.0017092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. Let n is integers at least 2, Bn is a brush graph with 2n vertices. In this paper, we determine the rainbow vertex connection number of square, glue, middle and splitting graph of brush graph.\",\"PeriodicalId\":309025,\"journal\":{\"name\":\"THE 4TH INDOMS INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATION (IICMA 2019)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE 4TH INDOMS INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATION (IICMA 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0017092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE 4TH INDOMS INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATION (IICMA 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0017092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果对于V(G)中的每两个顶点u和V,存在一条u - V路径,且所有内部顶点都具有不同的颜色,则称顶点彩色图G = (V(G), E(G))为彩虹顶点连通图。G的彩虹顶点连接数用rvc(G)表示,它是使G彩虹顶点连接所需的最小颜色数。设n是至少为2的整数,Bn是一个有2n个顶点的刷图。本文确定了画笔图的正方形图、胶水图、中间图和分割图的彩虹顶点连接数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rainbow vertex connection number of square, glue, middle and splitting graph of brush graph
A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. Let n is integers at least 2, Bn is a brush graph with 2n vertices. In this paper, we determine the rainbow vertex connection number of square, glue, middle and splitting graph of brush graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信