Paulo Chagas, Luiz Souza, Izabelle Pontes, R. Calumby, M. Angelo, A. Duarte, Washington L. C. dos-Santos, Luciano Oliveira
{"title":"基于深度学习的膜性肾病分类和蒙特卡罗dropout不确定性估计","authors":"Paulo Chagas, Luiz Souza, Izabelle Pontes, R. Calumby, M. Angelo, A. Duarte, Washington L. C. dos-Santos, Luciano Oliveira","doi":"10.5753/sbcas.2021.16070","DOIUrl":null,"url":null,"abstract":"Membranous Nephropathy (MN) is one of the most common glomerular diseases that cause adult nephrotic syndrome. To assist pathologists on MN classification, we evaluated three deep-learning-based architectures, namely, ResNet-18, DenseNet and Wide-ResNet. In addition, to accomplish more reliable results, we applied Monte-Carlo Dropout for uncertainty estimation. We achieved average F1-Scores above 92% for all models, with Wide-ResNet obtaining the highest average F1-Score (93.2%). For uncertainty estimation on Wide-ResNet, the uncertainty scores showed high relation with incorrect classifications, proving that these uncertainty estimates can support pathologists on the analysis of model predictions.","PeriodicalId":413867,"journal":{"name":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-learning-based membranous nephropathy classification and Monte-Carlo dropout uncertainty estimation\",\"authors\":\"Paulo Chagas, Luiz Souza, Izabelle Pontes, R. Calumby, M. Angelo, A. Duarte, Washington L. C. dos-Santos, Luciano Oliveira\",\"doi\":\"10.5753/sbcas.2021.16070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membranous Nephropathy (MN) is one of the most common glomerular diseases that cause adult nephrotic syndrome. To assist pathologists on MN classification, we evaluated three deep-learning-based architectures, namely, ResNet-18, DenseNet and Wide-ResNet. In addition, to accomplish more reliable results, we applied Monte-Carlo Dropout for uncertainty estimation. We achieved average F1-Scores above 92% for all models, with Wide-ResNet obtaining the highest average F1-Score (93.2%). For uncertainty estimation on Wide-ResNet, the uncertainty scores showed high relation with incorrect classifications, proving that these uncertainty estimates can support pathologists on the analysis of model predictions.\",\"PeriodicalId\":413867,\"journal\":{\"name\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2021.16070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2021.16070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep-learning-based membranous nephropathy classification and Monte-Carlo dropout uncertainty estimation
Membranous Nephropathy (MN) is one of the most common glomerular diseases that cause adult nephrotic syndrome. To assist pathologists on MN classification, we evaluated three deep-learning-based architectures, namely, ResNet-18, DenseNet and Wide-ResNet. In addition, to accomplish more reliable results, we applied Monte-Carlo Dropout for uncertainty estimation. We achieved average F1-Scores above 92% for all models, with Wide-ResNet obtaining the highest average F1-Score (93.2%). For uncertainty estimation on Wide-ResNet, the uncertainty scores showed high relation with incorrect classifications, proving that these uncertainty estimates can support pathologists on the analysis of model predictions.