用于自动驾驶和地图学习的定制地标表示的自动映射

Jan-Hendrik Pauls, Benjamin Schmidt, C. Stiller
{"title":"用于自动驾驶和地图学习的定制地标表示的自动映射","authors":"Jan-Hendrik Pauls, Benjamin Schmidt, C. Stiller","doi":"10.1109/ICRA48506.2021.9561432","DOIUrl":null,"url":null,"abstract":"While the automatic creation of maps for localization is a widely tackled problem, the automatic inference of higher layers of HD maps is not. Additionally, approaches that learn from maps require richer and more precise landmarks than currently available.In this work, we fuse semantic detections from a monocular camera with depth and orientation estimation from lidar to automatically detect, track and map parametric, semantic map elements. We propose the use of tailored representations that are minimal in the number of parameters, making the map compact and the estimation robust and precise enough to enable map inference even from single frame detections. As examples, we map traffic signs, traffic lights and poles using upright rectangles and cylinders.After robust multi-view optimization, traffic lights and signs have a mean absolute position error of below 10 cm, extent estimates are below 5 cm and orientation MAE is below 6◦. This proves the suitability as automatically generated, pixel-accurate ground truth, reducing the task of ground truth generation from tedious 3D annotation to a post-processing of misdetections.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Mapping of Tailored Landmark Representations for Automated Driving and Map Learning\",\"authors\":\"Jan-Hendrik Pauls, Benjamin Schmidt, C. Stiller\",\"doi\":\"10.1109/ICRA48506.2021.9561432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the automatic creation of maps for localization is a widely tackled problem, the automatic inference of higher layers of HD maps is not. Additionally, approaches that learn from maps require richer and more precise landmarks than currently available.In this work, we fuse semantic detections from a monocular camera with depth and orientation estimation from lidar to automatically detect, track and map parametric, semantic map elements. We propose the use of tailored representations that are minimal in the number of parameters, making the map compact and the estimation robust and precise enough to enable map inference even from single frame detections. As examples, we map traffic signs, traffic lights and poles using upright rectangles and cylinders.After robust multi-view optimization, traffic lights and signs have a mean absolute position error of below 10 cm, extent estimates are below 5 cm and orientation MAE is below 6◦. This proves the suitability as automatically generated, pixel-accurate ground truth, reducing the task of ground truth generation from tedious 3D annotation to a post-processing of misdetections.\",\"PeriodicalId\":108312,\"journal\":{\"name\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48506.2021.9561432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

虽然自动创建用于定位的地图是一个广泛解决的问题,但自动推断更高层次的高清地图却不是。此外,从地图中学习的方法需要比目前更丰富、更精确的地标。在这项工作中,我们将单目相机的语义检测与激光雷达的深度和方向估计融合在一起,以自动检测、跟踪和绘制参数化语义地图元素。我们建议使用参数数量最少的定制表示,使地图紧凑,估计足够鲁棒和精确,甚至可以从单帧检测中进行地图推断。例如,我们使用直立的矩形和圆柱体绘制交通标志、交通灯和电线杆。经过稳健的多视角优化,交通信号灯和标志的平均绝对位置误差低于10厘米,范围估计低于5厘米,方向MAE低于6◦。这证明了自动生成、像素级精确的地面真值的适用性,将地面真值生成的任务从繁琐的3D标注减少到误检的后处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Mapping of Tailored Landmark Representations for Automated Driving and Map Learning
While the automatic creation of maps for localization is a widely tackled problem, the automatic inference of higher layers of HD maps is not. Additionally, approaches that learn from maps require richer and more precise landmarks than currently available.In this work, we fuse semantic detections from a monocular camera with depth and orientation estimation from lidar to automatically detect, track and map parametric, semantic map elements. We propose the use of tailored representations that are minimal in the number of parameters, making the map compact and the estimation robust and precise enough to enable map inference even from single frame detections. As examples, we map traffic signs, traffic lights and poles using upright rectangles and cylinders.After robust multi-view optimization, traffic lights and signs have a mean absolute position error of below 10 cm, extent estimates are below 5 cm and orientation MAE is below 6◦. This proves the suitability as automatically generated, pixel-accurate ground truth, reducing the task of ground truth generation from tedious 3D annotation to a post-processing of misdetections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信