多类数据的逻辑分析

J. Herrera, M. M. Subasi
{"title":"多类数据的逻辑分析","authors":"J. Herrera, M. M. Subasi","doi":"10.1109/CLEI.2015.7360007","DOIUrl":null,"url":null,"abstract":"Logical Analysis of Data (LAD) is a two-class learning algorithm which integrates principles of combinatorics, optimization, and the theory of Boolean functions. This paper proposes an algorithm based on mixed integer linear programming to extend the LAD methodology to solve multi-class classification problems, where One-vs-All (OvA) learning models are efficiently constructed to classify observations in predefined classes. The utility of the proposed approach is demonstrated through experiments on multi-class benchmark datasets.","PeriodicalId":263586,"journal":{"name":"Latin American Computing Conference / Conferencia Latinoamericana En Informatica","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Logical analysis of multi-class data\",\"authors\":\"J. Herrera, M. M. Subasi\",\"doi\":\"10.1109/CLEI.2015.7360007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logical Analysis of Data (LAD) is a two-class learning algorithm which integrates principles of combinatorics, optimization, and the theory of Boolean functions. This paper proposes an algorithm based on mixed integer linear programming to extend the LAD methodology to solve multi-class classification problems, where One-vs-All (OvA) learning models are efficiently constructed to classify observations in predefined classes. The utility of the proposed approach is demonstrated through experiments on multi-class benchmark datasets.\",\"PeriodicalId\":263586,\"journal\":{\"name\":\"Latin American Computing Conference / Conferencia Latinoamericana En Informatica\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Computing Conference / Conferencia Latinoamericana En Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEI.2015.7360007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Computing Conference / Conferencia Latinoamericana En Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI.2015.7360007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

数据逻辑分析(LAD)是一种两类学习算法,它结合了组合学、最优化和布尔函数理论的原理。本文提出了一种基于混合整数线性规划的算法,将LAD方法扩展到解决多类分类问题,该算法有效地构建了One-vs-All (OvA)学习模型来对预定义类中的观测值进行分类。通过在多类基准数据集上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logical analysis of multi-class data
Logical Analysis of Data (LAD) is a two-class learning algorithm which integrates principles of combinatorics, optimization, and the theory of Boolean functions. This paper proposes an algorithm based on mixed integer linear programming to extend the LAD methodology to solve multi-class classification problems, where One-vs-All (OvA) learning models are efficiently constructed to classify observations in predefined classes. The utility of the proposed approach is demonstrated through experiments on multi-class benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信