基于GMM的MFCC阿拉伯语口语数字识别

N. Hammami, M. Bedda, N. Farah
{"title":"基于GMM的MFCC阿拉伯语口语数字识别","authors":"N. Hammami, M. Bedda, N. Farah","doi":"10.1109/STUDENT.2012.6408392","DOIUrl":null,"url":null,"abstract":"Gaussian mixture model (GMM) is a conventional method for speech recognition, known for its effectiveness and scalability in speech modeling. This paper presents automatic recognition of the Spoken Arabic Digits based on (GMM) classifier and the leading approach for speech recognition features extraction Delta-Delta Mel- frequency cepstral coefficients (DDMFCC). The experimental results give the best result with the obtained parameters; they achieve a 99.31% correct digit recognition dataset which is very satisfactory compared to previous work on spoken Arabic digits speech recognition.","PeriodicalId":282263,"journal":{"name":"2012 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Spoken Arabic Digits recognition using MFCC based on GMM\",\"authors\":\"N. Hammami, M. Bedda, N. Farah\",\"doi\":\"10.1109/STUDENT.2012.6408392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian mixture model (GMM) is a conventional method for speech recognition, known for its effectiveness and scalability in speech modeling. This paper presents automatic recognition of the Spoken Arabic Digits based on (GMM) classifier and the leading approach for speech recognition features extraction Delta-Delta Mel- frequency cepstral coefficients (DDMFCC). The experimental results give the best result with the obtained parameters; they achieve a 99.31% correct digit recognition dataset which is very satisfactory compared to previous work on spoken Arabic digits speech recognition.\",\"PeriodicalId\":282263,\"journal\":{\"name\":\"2012 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STUDENT.2012.6408392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STUDENT.2012.6408392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

高斯混合模型(GMM)是一种传统的语音识别方法,以其在语音建模方面的有效性和可扩展性而闻名。本文提出了基于GMM分类器的阿拉伯语口语数字自动识别和语音识别特征提取的主要方法——Delta-Delta Mel-倒谱系数(DDMFCC)。实验结果与所得到的参数吻合较好;他们实现了99.31%的正确数字识别数据集,与之前的阿拉伯语口语数字语音识别工作相比,这是非常令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spoken Arabic Digits recognition using MFCC based on GMM
Gaussian mixture model (GMM) is a conventional method for speech recognition, known for its effectiveness and scalability in speech modeling. This paper presents automatic recognition of the Spoken Arabic Digits based on (GMM) classifier and the leading approach for speech recognition features extraction Delta-Delta Mel- frequency cepstral coefficients (DDMFCC). The experimental results give the best result with the obtained parameters; they achieve a 99.31% correct digit recognition dataset which is very satisfactory compared to previous work on spoken Arabic digits speech recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信