对轮式农业机械的运动控制进行了实时建模

A. S. Nenajdenko, V. I. Poddubnyj, A. I. Valekzhanin
{"title":"对轮式农业机械的运动控制进行了实时建模","authors":"A. S. Nenajdenko, V. I. Poddubnyj, A. I. Valekzhanin","doi":"10.17816/0321-4443-66386","DOIUrl":null,"url":null,"abstract":"The research, which purpose is the development of a motion control system for wheeled agricultural machines, is conducted in Polzunov Altai State Technical University. One of the most important steps in this case is the testing of the developed control algorithms. It is advisable to replace the field trials by real-time motion modeling, which allows to significantly reduce financial and time costs. The developed control algorithm can be conditionally divided into global and local regulation. Global regulation must determine the angle of rotation of the steered wheels (or the angle of the frame break) by a deviation from the specified trajectory, which ensures the motion along the specified trajectory. Input parameters are the specified path of motion, the current coordinates of the machine and the projection of speed on fixed axes. Local control provides the implementation of the set value of the angle of rotation of the steered wheels. To the input of the local adjustment program is given the values of the set and current angles of rotation of the wheels and the direction of rotation of the electric motor of the maneuvering device. The algorithm for determining the required angle of rotation of the wheels is based on the method of predicting the position of the wheeled vehicle through the predetermined forecast time. In real-time tests, the wheeled vehicle is replaced by its mathematical model, obtained using the differential equations of plane motion. The complex of equipment provides registration and generation of the necessary parameters for the operation of the control system in real time. The tests were carried out on the experimental stand «steering - front suspension of the vehicle». The front steerable wheels were rotated by an electromechanical maneuvering device to an angle providing movement along a given trajectory. The motion along rectilinear and curvilinear trajectories was modeled taking into account perturbations from the side of the support surface and without them. When moving along a curvilinear trajectory, the deviation from the specified trajectory does not exceed 0,3 meters at a speed of 3,33 m/s. Based on the results of the experiments, it was established that the implemented control algorithm ensures motion along a given trajectory with a sufficient degree of accuracy.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling the movement control of a wheeled agricultural machine in real time\",\"authors\":\"A. S. Nenajdenko, V. I. Poddubnyj, A. I. Valekzhanin\",\"doi\":\"10.17816/0321-4443-66386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research, which purpose is the development of a motion control system for wheeled agricultural machines, is conducted in Polzunov Altai State Technical University. One of the most important steps in this case is the testing of the developed control algorithms. It is advisable to replace the field trials by real-time motion modeling, which allows to significantly reduce financial and time costs. The developed control algorithm can be conditionally divided into global and local regulation. Global regulation must determine the angle of rotation of the steered wheels (or the angle of the frame break) by a deviation from the specified trajectory, which ensures the motion along the specified trajectory. Input parameters are the specified path of motion, the current coordinates of the machine and the projection of speed on fixed axes. Local control provides the implementation of the set value of the angle of rotation of the steered wheels. To the input of the local adjustment program is given the values of the set and current angles of rotation of the wheels and the direction of rotation of the electric motor of the maneuvering device. The algorithm for determining the required angle of rotation of the wheels is based on the method of predicting the position of the wheeled vehicle through the predetermined forecast time. In real-time tests, the wheeled vehicle is replaced by its mathematical model, obtained using the differential equations of plane motion. The complex of equipment provides registration and generation of the necessary parameters for the operation of the control system in real time. The tests were carried out on the experimental stand «steering - front suspension of the vehicle». The front steerable wheels were rotated by an electromechanical maneuvering device to an angle providing movement along a given trajectory. The motion along rectilinear and curvilinear trajectories was modeled taking into account perturbations from the side of the support surface and without them. When moving along a curvilinear trajectory, the deviation from the specified trajectory does not exceed 0,3 meters at a speed of 3,33 m/s. Based on the results of the experiments, it was established that the implemented control algorithm ensures motion along a given trajectory with a sufficient degree of accuracy.\",\"PeriodicalId\":136662,\"journal\":{\"name\":\"Traktory i sel hozmashiny\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traktory i sel hozmashiny\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/0321-4443-66386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traktory i sel hozmashiny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/0321-4443-66386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项研究的目的是开发轮式农业机械的运动控制系统,由波尔祖诺夫阿尔泰国立技术大学进行。在这种情况下,最重要的步骤之一是测试所开发的控制算法。建议用实时运动建模代替现场试验,这可以显着减少财务和时间成本。该控制算法可有条件地分为全局控制和局部控制。全局调节必须以偏离指定轨迹的角度来确定被控车轮的转动角度(或车架断裂角度),以保证沿指定轨迹运动。输入参数是指定的运动路径,机器的当前坐标和速度在固定轴上的投影。局部控制提供了被引导车轮旋转角度的设定值的实现。给局部调节程序的输入输入车轮的设定和当前旋转角度的值以及机动装置电动机的旋转方向。确定所需车轮转角的算法是基于通过预定的预测时间预测轮式车辆位置的方法。在实时试验中,轮式车辆被替换为其数学模型,该模型由平面运动微分方程得到。设备复合体为控制系统的实时运行提供了必要参数的登记和生成。测试是在“车辆转向-前悬架”实验台上进行的。前方向盘由机电机动装置旋转到一定角度,使其沿给定轨迹运动。沿直线和曲线轨迹的运动模型考虑了来自支撑面侧面和无支撑面侧面的扰动。当沿曲线轨迹运动时,以3.33米/秒的速度与指定轨迹的偏差不超过0.3米。实验结果表明,所实现的控制算法能够保证机器人沿给定轨迹运动并具有足够的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the movement control of a wheeled agricultural machine in real time
The research, which purpose is the development of a motion control system for wheeled agricultural machines, is conducted in Polzunov Altai State Technical University. One of the most important steps in this case is the testing of the developed control algorithms. It is advisable to replace the field trials by real-time motion modeling, which allows to significantly reduce financial and time costs. The developed control algorithm can be conditionally divided into global and local regulation. Global regulation must determine the angle of rotation of the steered wheels (or the angle of the frame break) by a deviation from the specified trajectory, which ensures the motion along the specified trajectory. Input parameters are the specified path of motion, the current coordinates of the machine and the projection of speed on fixed axes. Local control provides the implementation of the set value of the angle of rotation of the steered wheels. To the input of the local adjustment program is given the values of the set and current angles of rotation of the wheels and the direction of rotation of the electric motor of the maneuvering device. The algorithm for determining the required angle of rotation of the wheels is based on the method of predicting the position of the wheeled vehicle through the predetermined forecast time. In real-time tests, the wheeled vehicle is replaced by its mathematical model, obtained using the differential equations of plane motion. The complex of equipment provides registration and generation of the necessary parameters for the operation of the control system in real time. The tests were carried out on the experimental stand «steering - front suspension of the vehicle». The front steerable wheels were rotated by an electromechanical maneuvering device to an angle providing movement along a given trajectory. The motion along rectilinear and curvilinear trajectories was modeled taking into account perturbations from the side of the support surface and without them. When moving along a curvilinear trajectory, the deviation from the specified trajectory does not exceed 0,3 meters at a speed of 3,33 m/s. Based on the results of the experiments, it was established that the implemented control algorithm ensures motion along a given trajectory with a sufficient degree of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信