论Iohvidov对费雪-弗罗本纽斯定理的证明

R. C. Thompson
{"title":"论Iohvidov对费雪-弗罗本纽斯定理的证明","authors":"R. C. Thompson","doi":"10.6028/jres.080b.028","DOIUrl":null,"url":null,"abstract":"then jT\"_1 is a Hankel matrix for all Toeplitz matrices TnI' Thi s proced ure, howe ver, does not carry Hermitian ToepLitz matrices to Hermitian (i.e., real) Hankel matrices. The theore m of FischerFroebenius asserts that a class of tran sformation s exist each of which uniformly carries Toeplitz matrices to Hankel matrices in such a way that Hermitian Toeplitz matrices are carried to Hermitian Hankel matrices. Recently I. C. Iohvidov has publi shed three proofs of this result. One of these proofs is a direct but somewhat intricate calculation; it may be found on pages 211-213 of [1]1. A second proof, to be found on page 217 of [1] and also in [2], makes a preliminary reduction to the case of positive definite ToepLitz matrices, then takes advantage of a decomposition of definite Toeplitz matrices known from the theory of the trigonometric moment problem. The third proof, in [2], avoids the .reduction to the positive definite case, and uses instead a more co mplicated decomposition of Toeplitz matrices due to Iohvidov and Krein [3, p. 338]. The purpose of this paper is to give a short and direct proof of the Fischer-Frobe nius theorem. Our proof is based on a simple decomposition of arbitrary Toeplitz matrices, for which the proof is almost a triviality and whic h was apparently not noticed in [1] and [2]. See equation (3). Iohvidov's techniques then may be applied to (3) to produce the des ired result rapidly.","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Iohvidov's proofs of the Fischer-Frobenius theorem\",\"authors\":\"R. C. Thompson\",\"doi\":\"10.6028/jres.080b.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"then jT\\\"_1 is a Hankel matrix for all Toeplitz matrices TnI' Thi s proced ure, howe ver, does not carry Hermitian ToepLitz matrices to Hermitian (i.e., real) Hankel matrices. The theore m of FischerFroebenius asserts that a class of tran sformation s exist each of which uniformly carries Toeplitz matrices to Hankel matrices in such a way that Hermitian Toeplitz matrices are carried to Hermitian Hankel matrices. Recently I. C. Iohvidov has publi shed three proofs of this result. One of these proofs is a direct but somewhat intricate calculation; it may be found on pages 211-213 of [1]1. A second proof, to be found on page 217 of [1] and also in [2], makes a preliminary reduction to the case of positive definite ToepLitz matrices, then takes advantage of a decomposition of definite Toeplitz matrices known from the theory of the trigonometric moment problem. The third proof, in [2], avoids the .reduction to the positive definite case, and uses instead a more co mplicated decomposition of Toeplitz matrices due to Iohvidov and Krein [3, p. 338]. The purpose of this paper is to give a short and direct proof of the Fischer-Frobe nius theorem. Our proof is based on a simple decomposition of arbitrary Toeplitz matrices, for which the proof is almost a triviality and whic h was apparently not noticed in [1] and [2]. See equation (3). Iohvidov's techniques then may be applied to (3) to produce the des ired result rapidly.\",\"PeriodicalId\":166823,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.080b.028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.080b.028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

那么,对于所有的Toeplitz矩阵,jT′′是一个Hankel矩阵。然而,这个过程并没有把厄米的Toeplitz矩阵转化为厄米的(即实数)汉克尔矩阵。fischer - froebenius的定理m断言存在一类变换s,其中每一类变换s都能将Toeplitz矩阵均匀地携带到Hankel矩阵,使得hermite - Toeplitz矩阵被携带到hermite - Hankel矩阵。最近,i.c. Iohvidov发表了对这一结果的三个证明。其中一种证明是一种直接但有些复杂的计算;可以在[1]1的211-213页找到。第二个证明,在[1]的第217页和[2]中找到,对正定ToepLitz矩阵的情况进行了初步的简化,然后利用了从三角矩问题理论中已知的确定ToepLitz矩阵的分解。在[2]中,第三个证明避免了对正定情况的简化,而是使用了由Iohvidov和Krein [3, p. 338]提出的更复杂的Toeplitz矩阵分解。本文的目的是给费雪-弗洛伯定理一个简短而直接的证明。我们的证明是基于对任意Toeplitz矩阵的简单分解,对于它的证明几乎是微不足道的,在[1]和[2]中显然没有注意到这一点。如式(3)所示。Iohvidov的技术可应用于式(3),以迅速产生期望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Iohvidov's proofs of the Fischer-Frobenius theorem
then jT"_1 is a Hankel matrix for all Toeplitz matrices TnI' Thi s proced ure, howe ver, does not carry Hermitian ToepLitz matrices to Hermitian (i.e., real) Hankel matrices. The theore m of FischerFroebenius asserts that a class of tran sformation s exist each of which uniformly carries Toeplitz matrices to Hankel matrices in such a way that Hermitian Toeplitz matrices are carried to Hermitian Hankel matrices. Recently I. C. Iohvidov has publi shed three proofs of this result. One of these proofs is a direct but somewhat intricate calculation; it may be found on pages 211-213 of [1]1. A second proof, to be found on page 217 of [1] and also in [2], makes a preliminary reduction to the case of positive definite ToepLitz matrices, then takes advantage of a decomposition of definite Toeplitz matrices known from the theory of the trigonometric moment problem. The third proof, in [2], avoids the .reduction to the positive definite case, and uses instead a more co mplicated decomposition of Toeplitz matrices due to Iohvidov and Krein [3, p. 338]. The purpose of this paper is to give a short and direct proof of the Fischer-Frobe nius theorem. Our proof is based on a simple decomposition of arbitrary Toeplitz matrices, for which the proof is almost a triviality and whic h was apparently not noticed in [1] and [2]. See equation (3). Iohvidov's techniques then may be applied to (3) to produce the des ired result rapidly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信