采用源耦合场效应管逻辑的1GHz 50mW双模分频电路

S. Shimizu, Y. Kamatani, N. Toyoda, K. Kanazawa, M. Mochizuki, T. Terada, A. Hojo
{"title":"采用源耦合场效应管逻辑的1GHz 50mW双模分频电路","authors":"S. Shimizu, Y. Kamatani, N. Toyoda, K. Kanazawa, M. Mochizuki, T. Terada, A. Hojo","doi":"10.1109/ISSCC.1984.1156593","DOIUrl":null,"url":null,"abstract":"DUAL MODULUS BIPOLAR ECL CIRCUIT ICs have been widely used in phase locked loop (PLL) synthesizer systems. Representative applications have been in the automoble telephone or in transceivers, where low power consumption is required, because of battery operation. Accordingly, commercially available Si ECL divider ICs are not satisfactory; the lowest power consumption available is 150mW2. Gallium arsenide divider ICs, which can operate at less power consumption, are thus promising for such applications. Among the GaAs logic circuits, the Direct Coupled FET Logic (DCFL) is the most attractive for its power consumption feature. However, at present, it is questionable whether the DCFL is practical for commercial products, because of its small noise margin and process sensitivity. The GaAs Source Coupled FET Logic (SCFL)’ basic gate circuit employs a differential pair of FETs. Therefore, merely threshold voltage pairing of differentially-connected FETs is required for normal operation. Consequently, a higher chip yield can be expected.","PeriodicalId":260117,"journal":{"name":"1984 IEEE International Solid-State Circuits Conference. Digest of Technical Papers","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 1GHz 50mW dual modulus divider IC using source coupled FET logic\",\"authors\":\"S. Shimizu, Y. Kamatani, N. Toyoda, K. Kanazawa, M. Mochizuki, T. Terada, A. Hojo\",\"doi\":\"10.1109/ISSCC.1984.1156593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DUAL MODULUS BIPOLAR ECL CIRCUIT ICs have been widely used in phase locked loop (PLL) synthesizer systems. Representative applications have been in the automoble telephone or in transceivers, where low power consumption is required, because of battery operation. Accordingly, commercially available Si ECL divider ICs are not satisfactory; the lowest power consumption available is 150mW2. Gallium arsenide divider ICs, which can operate at less power consumption, are thus promising for such applications. Among the GaAs logic circuits, the Direct Coupled FET Logic (DCFL) is the most attractive for its power consumption feature. However, at present, it is questionable whether the DCFL is practical for commercial products, because of its small noise margin and process sensitivity. The GaAs Source Coupled FET Logic (SCFL)’ basic gate circuit employs a differential pair of FETs. Therefore, merely threshold voltage pairing of differentially-connected FETs is required for normal operation. Consequently, a higher chip yield can be expected.\",\"PeriodicalId\":260117,\"journal\":{\"name\":\"1984 IEEE International Solid-State Circuits Conference. Digest of Technical Papers\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1984 IEEE International Solid-State Circuits Conference. Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.1984.1156593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1984 IEEE International Solid-State Circuits Conference. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.1984.1156593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

双模双极ECL电路广泛应用于锁相环(PLL)合成器系统中。代表性的应用是汽车电话或收发器,由于电池运行,需要低功耗。因此,市售的Si ECL分压器ic并不令人满意;最低可用功耗150mW2。砷化镓分压器ic可以以更低的功耗运行,因此很有希望用于此类应用。在砷化镓逻辑电路中,直接耦合场效应晶体管逻辑电路(DCFL)以其功耗特性最具吸引力。然而,由于DCFL的噪声余量小,工艺灵敏度高,目前能否应用于商业产品尚存疑问。GaAs源耦合场效应管逻辑(SCFL)的基本门电路采用一对差分场效应管。因此,正常工作只需要差分连接场效应管的阈值电压配对。因此,可以预期更高的芯片产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 1GHz 50mW dual modulus divider IC using source coupled FET logic
DUAL MODULUS BIPOLAR ECL CIRCUIT ICs have been widely used in phase locked loop (PLL) synthesizer systems. Representative applications have been in the automoble telephone or in transceivers, where low power consumption is required, because of battery operation. Accordingly, commercially available Si ECL divider ICs are not satisfactory; the lowest power consumption available is 150mW2. Gallium arsenide divider ICs, which can operate at less power consumption, are thus promising for such applications. Among the GaAs logic circuits, the Direct Coupled FET Logic (DCFL) is the most attractive for its power consumption feature. However, at present, it is questionable whether the DCFL is practical for commercial products, because of its small noise margin and process sensitivity. The GaAs Source Coupled FET Logic (SCFL)’ basic gate circuit employs a differential pair of FETs. Therefore, merely threshold voltage pairing of differentially-connected FETs is required for normal operation. Consequently, a higher chip yield can be expected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信