硅片上微机械元件之间的卡西米尔效应

H. B. Chan, J. Zou, Z. Marcet, A. Rodriguez, M. T. H. Reid, A. McCauley, I. Kravchenko, T. Lu, Y. Bao, S. Johnson
{"title":"硅片上微机械元件之间的卡西米尔效应","authors":"H. B. Chan, J. Zou, Z. Marcet, A. Rodriguez, M. T. H. Reid, A. McCauley, I. Kravchenko, T. Lu, Y. Bao, S. Johnson","doi":"10.1109/OMN.2014.6924543","DOIUrl":null,"url":null,"abstract":"The Casimir force originates from quantum fluctuations. While this force is too weak to have any measurable effects between objects at separations larger than ~10 μm it dominates the interaction between electrically neutral surfaces at the nanoscale. By fabricating a doubly clamped microbeam for sensing the force and a comb actuator to control the distance, we demonstrate that the Casimir force can become the dominant interaction between components within the same silicon chip.","PeriodicalId":161791,"journal":{"name":"2014 International Conference on Optical MEMS and Nanophotonics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Casimir effect between micromechanical components on a silicon chip\",\"authors\":\"H. B. Chan, J. Zou, Z. Marcet, A. Rodriguez, M. T. H. Reid, A. McCauley, I. Kravchenko, T. Lu, Y. Bao, S. Johnson\",\"doi\":\"10.1109/OMN.2014.6924543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Casimir force originates from quantum fluctuations. While this force is too weak to have any measurable effects between objects at separations larger than ~10 μm it dominates the interaction between electrically neutral surfaces at the nanoscale. By fabricating a doubly clamped microbeam for sensing the force and a comb actuator to control the distance, we demonstrate that the Casimir force can become the dominant interaction between components within the same silicon chip.\",\"PeriodicalId\":161791,\"journal\":{\"name\":\"2014 International Conference on Optical MEMS and Nanophotonics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Optical MEMS and Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMN.2014.6924543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Optical MEMS and Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2014.6924543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

卡西米尔力起源于量子涨落。虽然这种力太弱,在距离大于~10 μm的物体之间没有任何可测量的影响,但它在纳米尺度上主导了电中性表面之间的相互作用。通过制造用于感应力的双夹紧微梁和用于控制距离的梳状致动器,我们证明了卡西米尔力可以成为同一硅芯片内组件之间的主要相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Casimir effect between micromechanical components on a silicon chip
The Casimir force originates from quantum fluctuations. While this force is too weak to have any measurable effects between objects at separations larger than ~10 μm it dominates the interaction between electrically neutral surfaces at the nanoscale. By fabricating a doubly clamped microbeam for sensing the force and a comb actuator to control the distance, we demonstrate that the Casimir force can become the dominant interaction between components within the same silicon chip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信