工业环境中gpu处理的3D距离地图的可扩展性

Atle Aalerud, J. Dybedal, G. Hovland
{"title":"工业环境中gpu处理的3D距离地图的可扩展性","authors":"Atle Aalerud, J. Dybedal, G. Hovland","doi":"10.1109/MESA.2018.8449160","DOIUrl":null,"url":null,"abstract":"This paper contains a benchmark analysis of the open source library GPU-Voxels together with the Robot Operating System (ROS) in large-scale industrial robotics environment. Six sensor nodes with embedded computing generate real-time point cloud data as ROS topics. The overall data from all sensor nodes is processed by a combination of CPU and GPU on a central ROS node. Experimental results demonstrate that the system is able to handle frame rates of 10 and 20 Hz with voxel sizes of 4, 6, 8 and 12 cm without saturation of the CPU or the GPU used by the GPU-Voxels library. The results in this paper show that ROS, in combination with GPU-Voxels, can be used as a viable solution for real-time 3D collision detection and avoidance applications in relatively large-scale industrial environments.","PeriodicalId":138936,"journal":{"name":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalability of GPU-Processed 3D Distance Maps for Industrial Environments\",\"authors\":\"Atle Aalerud, J. Dybedal, G. Hovland\",\"doi\":\"10.1109/MESA.2018.8449160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper contains a benchmark analysis of the open source library GPU-Voxels together with the Robot Operating System (ROS) in large-scale industrial robotics environment. Six sensor nodes with embedded computing generate real-time point cloud data as ROS topics. The overall data from all sensor nodes is processed by a combination of CPU and GPU on a central ROS node. Experimental results demonstrate that the system is able to handle frame rates of 10 and 20 Hz with voxel sizes of 4, 6, 8 and 12 cm without saturation of the CPU or the GPU used by the GPU-Voxels library. The results in this paper show that ROS, in combination with GPU-Voxels, can be used as a viable solution for real-time 3D collision detection and avoidance applications in relatively large-scale industrial environments.\",\"PeriodicalId\":138936,\"journal\":{\"name\":\"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MESA.2018.8449160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA.2018.8449160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对大规模工业机器人环境下的开源库GPU-Voxels和机器人操作系统(ROS)进行了基准测试分析。六个具有嵌入式计算的传感器节点生成实时点云数据作为ROS主题。来自所有传感器节点的整体数据由中央ROS节点上的CPU和GPU组合处理。实验结果表明,该系统能够处理4、6、8和12 cm体素大小的帧率为10和20 Hz的帧率,而不会使CPU或GPU-体素库使用的GPU饱和。本文的结果表明,ROS与GPU-Voxels相结合,可以作为一种可行的解决方案,用于相对大规模的工业环境中的实时3D碰撞检测和避免应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalability of GPU-Processed 3D Distance Maps for Industrial Environments
This paper contains a benchmark analysis of the open source library GPU-Voxels together with the Robot Operating System (ROS) in large-scale industrial robotics environment. Six sensor nodes with embedded computing generate real-time point cloud data as ROS topics. The overall data from all sensor nodes is processed by a combination of CPU and GPU on a central ROS node. Experimental results demonstrate that the system is able to handle frame rates of 10 and 20 Hz with voxel sizes of 4, 6, 8 and 12 cm without saturation of the CPU or the GPU used by the GPU-Voxels library. The results in this paper show that ROS, in combination with GPU-Voxels, can be used as a viable solution for real-time 3D collision detection and avoidance applications in relatively large-scale industrial environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信