基于密度聚类的油田物联网遥感分析

Tao Zhang, Dianzheng Fu, Yuanye Xu, Jingya Dong
{"title":"基于密度聚类的油田物联网遥感分析","authors":"Tao Zhang, Dianzheng Fu, Yuanye Xu, Jingya Dong","doi":"10.1109/IAI53119.2021.9619413","DOIUrl":null,"url":null,"abstract":"In this paper, a density-based neighborhood search clustering method is proposed. A decision graph is obtained through density calculation, this method only needs to select density centers, and clustering results can be achieved automatically without irregular and frequent parameter adjustment. The algorithm is suitable for industrial big data clustering. It not only explains the clustering results vividly, but also increases or decreases the amount of clustering rapidly according to the need. Experimental results show that this method performs well on artificial data sets in contrast to the traditional methods and is successfully applied to a real oilfield engineering case.","PeriodicalId":106675,"journal":{"name":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote sensing analysis of oilfield IoT based on density clustering\",\"authors\":\"Tao Zhang, Dianzheng Fu, Yuanye Xu, Jingya Dong\",\"doi\":\"10.1109/IAI53119.2021.9619413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a density-based neighborhood search clustering method is proposed. A decision graph is obtained through density calculation, this method only needs to select density centers, and clustering results can be achieved automatically without irregular and frequent parameter adjustment. The algorithm is suitable for industrial big data clustering. It not only explains the clustering results vividly, but also increases or decreases the amount of clustering rapidly according to the need. Experimental results show that this method performs well on artificial data sets in contrast to the traditional methods and is successfully applied to a real oilfield engineering case.\",\"PeriodicalId\":106675,\"journal\":{\"name\":\"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI53119.2021.9619413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI53119.2021.9619413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于密度的邻域搜索聚类方法。通过密度计算得到决策图,该方法只需要选择密度中心,无需不规则和频繁的参数调整即可自动获得聚类结果。该算法适用于工业大数据聚类。它不仅能生动地解释聚类结果,还能根据需要快速地增加或减少聚类的数量。实验结果表明,与传统方法相比,该方法在人工数据集上具有良好的性能,并成功应用于实际油田工程实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote sensing analysis of oilfield IoT based on density clustering
In this paper, a density-based neighborhood search clustering method is proposed. A decision graph is obtained through density calculation, this method only needs to select density centers, and clustering results can be achieved automatically without irregular and frequent parameter adjustment. The algorithm is suitable for industrial big data clustering. It not only explains the clustering results vividly, but also increases or decreases the amount of clustering rapidly according to the need. Experimental results show that this method performs well on artificial data sets in contrast to the traditional methods and is successfully applied to a real oilfield engineering case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信