Jiefeng Xi, Yicong Wu, Tae Hee Kim, Yongping Chen, Desheng Zheng, Li Huo, M. Cobb, S. Pun, J. Hwang, Xingde Li
{"title":"用于高分辨率光学分子成像临床翻译的内镜显微镜和生物相容性荧光纳米复合物","authors":"Jiefeng Xi, Yicong Wu, Tae Hee Kim, Yongping Chen, Desheng Zheng, Li Huo, M. Cobb, S. Pun, J. Hwang, Xingde Li","doi":"10.1109/LISSA.2009.4906706","DOIUrl":null,"url":null,"abstract":"This paper reports on our recent development of two-types of all-fiber-optic scanning endomicroscopy technologies for high-resolution optical imaging of internal organs. The first one is an OCT balloon catheter technology that permits systematic imaging of fine architectural morphologies of internal luminal organs over a large area. The second is a two-photon fluorescence endomicroscopy technology that enables assessment of tissue biochemical/metabolic information with a superb spatial resolution. Both endomicroscopes have a small diameter (1.2–2.4 mm) and can be readily integrated with a standard clinical gastroscope, providing complementary information about tissue structure and function and helping improve diagnostic yield. We will discuss the basic design principles, major engineering challenges, solutions, and some preliminary results. In addition, we will also present our approach in developing near infrared (NIR) fluorescent nanocomplexes (ICG-micelles), which can be functionalized for active molecular targeting to improve molecular specificity and imaging contrast. These nanocomplexes, made of FDA approved building blocks, are biocompatible and very promising for clinical translation. Ultimately the NIR nanocomplexes can be used in conjunction with endomicroscopy technologies for performing high-resolution optical molecular imaging in vivo and in real time.","PeriodicalId":285171,"journal":{"name":"2009 IEEE/NIH Life Science Systems and Applications Workshop","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endomicroscopy and biocompatible fluorescent nanocomplexes for clinical translation of high-resolution optical molecular imaging\",\"authors\":\"Jiefeng Xi, Yicong Wu, Tae Hee Kim, Yongping Chen, Desheng Zheng, Li Huo, M. Cobb, S. Pun, J. Hwang, Xingde Li\",\"doi\":\"10.1109/LISSA.2009.4906706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on our recent development of two-types of all-fiber-optic scanning endomicroscopy technologies for high-resolution optical imaging of internal organs. The first one is an OCT balloon catheter technology that permits systematic imaging of fine architectural morphologies of internal luminal organs over a large area. The second is a two-photon fluorescence endomicroscopy technology that enables assessment of tissue biochemical/metabolic information with a superb spatial resolution. Both endomicroscopes have a small diameter (1.2–2.4 mm) and can be readily integrated with a standard clinical gastroscope, providing complementary information about tissue structure and function and helping improve diagnostic yield. We will discuss the basic design principles, major engineering challenges, solutions, and some preliminary results. In addition, we will also present our approach in developing near infrared (NIR) fluorescent nanocomplexes (ICG-micelles), which can be functionalized for active molecular targeting to improve molecular specificity and imaging contrast. These nanocomplexes, made of FDA approved building blocks, are biocompatible and very promising for clinical translation. Ultimately the NIR nanocomplexes can be used in conjunction with endomicroscopy technologies for performing high-resolution optical molecular imaging in vivo and in real time.\",\"PeriodicalId\":285171,\"journal\":{\"name\":\"2009 IEEE/NIH Life Science Systems and Applications Workshop\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE/NIH Life Science Systems and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LISSA.2009.4906706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE/NIH Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISSA.2009.4906706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Endomicroscopy and biocompatible fluorescent nanocomplexes for clinical translation of high-resolution optical molecular imaging
This paper reports on our recent development of two-types of all-fiber-optic scanning endomicroscopy technologies for high-resolution optical imaging of internal organs. The first one is an OCT balloon catheter technology that permits systematic imaging of fine architectural morphologies of internal luminal organs over a large area. The second is a two-photon fluorescence endomicroscopy technology that enables assessment of tissue biochemical/metabolic information with a superb spatial resolution. Both endomicroscopes have a small diameter (1.2–2.4 mm) and can be readily integrated with a standard clinical gastroscope, providing complementary information about tissue structure and function and helping improve diagnostic yield. We will discuss the basic design principles, major engineering challenges, solutions, and some preliminary results. In addition, we will also present our approach in developing near infrared (NIR) fluorescent nanocomplexes (ICG-micelles), which can be functionalized for active molecular targeting to improve molecular specificity and imaging contrast. These nanocomplexes, made of FDA approved building blocks, are biocompatible and very promising for clinical translation. Ultimately the NIR nanocomplexes can be used in conjunction with endomicroscopy technologies for performing high-resolution optical molecular imaging in vivo and in real time.