多值神经逻辑网络

L. Hsu, H. Teh, Sing-Chai Chan, K. Loe
{"title":"多值神经逻辑网络","authors":"L. Hsu, H. Teh, Sing-Chai Chan, K. Loe","doi":"10.1109/ISMVL.1990.122658","DOIUrl":null,"url":null,"abstract":"Two types of networks that are useful in developing expert systems are proposed. The probabilistic network can be used for predictive types of expert systems, whereas the fuzzy network is more suitable for expert systems that help in decision-making. In both cases, the expert system can operate in two modes. In the normal mode, rules are given by experts and weights are assigned values. In the learning mode, weights are allowed to vary while the system is fed with examples.<<ETX>>","PeriodicalId":433001,"journal":{"name":"Proceedings of the Twentieth International Symposium on Multiple-Valued Logic","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-valued neural logic networks\",\"authors\":\"L. Hsu, H. Teh, Sing-Chai Chan, K. Loe\",\"doi\":\"10.1109/ISMVL.1990.122658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two types of networks that are useful in developing expert systems are proposed. The probabilistic network can be used for predictive types of expert systems, whereas the fuzzy network is more suitable for expert systems that help in decision-making. In both cases, the expert system can operate in two modes. In the normal mode, rules are given by experts and weights are assigned values. In the learning mode, weights are allowed to vary while the system is fed with examples.<<ETX>>\",\"PeriodicalId\":433001,\"journal\":{\"name\":\"Proceedings of the Twentieth International Symposium on Multiple-Valued Logic\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twentieth International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1990.122658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twentieth International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1990.122658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了两种可用于开发专家系统的网络。概率网络可用于预测类型的专家系统,而模糊网络更适合于帮助决策的专家系统。在这两种情况下,专家系统都可以在两种模式下运行。在正常模式下,规则由专家给出,权重赋值。在学习模式中,当系统被输入样本时,权重允许变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-valued neural logic networks
Two types of networks that are useful in developing expert systems are proposed. The probabilistic network can be used for predictive types of expert systems, whereas the fuzzy network is more suitable for expert systems that help in decision-making. In both cases, the expert system can operate in two modes. In the normal mode, rules are given by experts and weights are assigned values. In the learning mode, weights are allowed to vary while the system is fed with examples.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信