三-五-九-非标准介质中的亮、暗和扭结孤立波

Mati Youssoufa, O. Dafounansou, A. Mohamadou
{"title":"三-五-九-非标准介质中的亮、暗和扭结孤立波","authors":"Mati Youssoufa, O. Dafounansou, A. Mohamadou","doi":"10.5772/intechopen.92819","DOIUrl":null,"url":null,"abstract":"In this chapter, evolution of light beams in a cubic-quintic-septic-nonical medium is investigated. As the model equation, an extended form of the well-known nonlinear Schrödinger (NLS) equation is taken into account. By the use of a special ansatz, exact analytical solutions describing bright/dark and kink solitons are constructed. The existence of the wave solutions is discussed in a parameter regime. Moreover, the stability properties of the obtained solutions are investigated, and by employing Stuart and DiPrima’s stability analysis method, an analytical expression for the modulational stability is found.","PeriodicalId":123873,"journal":{"name":"Nonlinear Optics - From Solitons to Similaritons","volume":"371 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bright, Dark, and Kink Solitary Waves in a Cubic-Quintic-Septic-Nonical Medium\",\"authors\":\"Mati Youssoufa, O. Dafounansou, A. Mohamadou\",\"doi\":\"10.5772/intechopen.92819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, evolution of light beams in a cubic-quintic-septic-nonical medium is investigated. As the model equation, an extended form of the well-known nonlinear Schrödinger (NLS) equation is taken into account. By the use of a special ansatz, exact analytical solutions describing bright/dark and kink solitons are constructed. The existence of the wave solutions is discussed in a parameter regime. Moreover, the stability properties of the obtained solutions are investigated, and by employing Stuart and DiPrima’s stability analysis method, an analytical expression for the modulational stability is found.\",\"PeriodicalId\":123873,\"journal\":{\"name\":\"Nonlinear Optics - From Solitons to Similaritons\",\"volume\":\"371 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Optics - From Solitons to Similaritons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.92819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Optics - From Solitons to Similaritons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这一章中,我们研究了三次五次非典型介质中光束的演化。模型方程采用了众所周知的非线性Schrödinger (NLS)方程的扩展形式。利用一个特殊的解,构造了描述亮/暗孤子和扭结孤子的精确解析解。在一个参数范围内讨论了波解的存在性。此外,研究了所得解的稳定性性质,并利用Stuart和DiPrima的稳定性分析方法,得到了调制稳定性的解析表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bright, Dark, and Kink Solitary Waves in a Cubic-Quintic-Septic-Nonical Medium
In this chapter, evolution of light beams in a cubic-quintic-septic-nonical medium is investigated. As the model equation, an extended form of the well-known nonlinear Schrödinger (NLS) equation is taken into account. By the use of a special ansatz, exact analytical solutions describing bright/dark and kink solitons are constructed. The existence of the wave solutions is discussed in a parameter regime. Moreover, the stability properties of the obtained solutions are investigated, and by employing Stuart and DiPrima’s stability analysis method, an analytical expression for the modulational stability is found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信