{"title":"单层和双层多层光学在粉末x射线衍射中的应用","authors":"S. Misture","doi":"10.1155/2008/408702","DOIUrl":null,"url":null,"abstract":"The performance of parallel beam multilayer optics, including a parabolic multilayer Osmic MaxFlux GO-13N and a flat custom multilayer, was evaluated experimentally and compared to Bragg-Brentano and traditional \n‘‘parallel beam’’ or ‘‘thin film’’ optical geometries. A novel arrangement of a parabolic multilayer in the incident beam with a flat multilayer in the diffracted beam functioning as an analyzer crystal was proven effective for powder diffraction applications. The dual-optic configuration improves resolution while eliminating sample displacement and transparency errors as expected for a configuration with equatorial divergence below 100 arcseconds. Fundamental parameters fitting showed that the parabolic multilayer can be accurately modeled using a constant Gaussian function, while a long parallel-plate soller collimator requires a constant hat function. No additional convolutions are necessary for the diffracted-beam flat multilayer because of the lower acceptance angle.","PeriodicalId":193128,"journal":{"name":"X-ray Optics and Instrumentation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Single and Dual Multilayer Optics for Powder X-Ray Diffraction\",\"authors\":\"S. Misture\",\"doi\":\"10.1155/2008/408702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of parallel beam multilayer optics, including a parabolic multilayer Osmic MaxFlux GO-13N and a flat custom multilayer, was evaluated experimentally and compared to Bragg-Brentano and traditional \\n‘‘parallel beam’’ or ‘‘thin film’’ optical geometries. A novel arrangement of a parabolic multilayer in the incident beam with a flat multilayer in the diffracted beam functioning as an analyzer crystal was proven effective for powder diffraction applications. The dual-optic configuration improves resolution while eliminating sample displacement and transparency errors as expected for a configuration with equatorial divergence below 100 arcseconds. Fundamental parameters fitting showed that the parabolic multilayer can be accurately modeled using a constant Gaussian function, while a long parallel-plate soller collimator requires a constant hat function. No additional convolutions are necessary for the diffracted-beam flat multilayer because of the lower acceptance angle.\",\"PeriodicalId\":193128,\"journal\":{\"name\":\"X-ray Optics and Instrumentation\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"X-ray Optics and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2008/408702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"X-ray Optics and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2008/408702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Single and Dual Multilayer Optics for Powder X-Ray Diffraction
The performance of parallel beam multilayer optics, including a parabolic multilayer Osmic MaxFlux GO-13N and a flat custom multilayer, was evaluated experimentally and compared to Bragg-Brentano and traditional
‘‘parallel beam’’ or ‘‘thin film’’ optical geometries. A novel arrangement of a parabolic multilayer in the incident beam with a flat multilayer in the diffracted beam functioning as an analyzer crystal was proven effective for powder diffraction applications. The dual-optic configuration improves resolution while eliminating sample displacement and transparency errors as expected for a configuration with equatorial divergence below 100 arcseconds. Fundamental parameters fitting showed that the parabolic multilayer can be accurately modeled using a constant Gaussian function, while a long parallel-plate soller collimator requires a constant hat function. No additional convolutions are necessary for the diffracted-beam flat multilayer because of the lower acceptance angle.