利用apache hadoop MapReduce解决贝叶斯网络中的NP-hard计算问题

N. Jongsawat, W. Premchaiswadi
{"title":"利用apache hadoop MapReduce解决贝叶斯网络中的NP-hard计算问题","authors":"N. Jongsawat, W. Premchaiswadi","doi":"10.1109/ICTKE.2013.6756288","DOIUrl":null,"url":null,"abstract":"The problem of exact probabilistic inference in an arbitrary Bayes network is NP-hard. The process is time consuming and complex. To speed up the processing, we need to run parts of the subnetwork in parallel. This work addresses the application of a MapReduce based distributed computing framework, Hadoop, to Bayesian network model to speed up the Bayesian update and inference processes. We present an analytical framework for understanding the transformation of Bayesian network model to Map and Reduce tasks. Computer-based Patient Case Simulation System (422 nodes) is chosen as a case study for the transformation.","PeriodicalId":122281,"journal":{"name":"2013 Eleventh International Conference on ICT and Knowledge Engineering","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Solving the NP-hard computational problem in Bayesian networks using apache hadoop MapReduce\",\"authors\":\"N. Jongsawat, W. Premchaiswadi\",\"doi\":\"10.1109/ICTKE.2013.6756288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of exact probabilistic inference in an arbitrary Bayes network is NP-hard. The process is time consuming and complex. To speed up the processing, we need to run parts of the subnetwork in parallel. This work addresses the application of a MapReduce based distributed computing framework, Hadoop, to Bayesian network model to speed up the Bayesian update and inference processes. We present an analytical framework for understanding the transformation of Bayesian network model to Map and Reduce tasks. Computer-based Patient Case Simulation System (422 nodes) is chosen as a case study for the transformation.\",\"PeriodicalId\":122281,\"journal\":{\"name\":\"2013 Eleventh International Conference on ICT and Knowledge Engineering\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Eleventh International Conference on ICT and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTKE.2013.6756288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Eleventh International Conference on ICT and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTKE.2013.6756288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

任意贝叶斯网络中的精确概率推理问题是np困难问题。这个过程既耗时又复杂。为了加快处理速度,我们需要并行运行部分子网。本研究将基于MapReduce的分布式计算框架Hadoop应用于贝叶斯网络模型,以加快贝叶斯更新和推理过程。我们提出了一个分析框架来理解贝叶斯网络模型到Map和Reduce任务的转换。选择基于计算机的患者病例模拟系统(422个节点)作为转换的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving the NP-hard computational problem in Bayesian networks using apache hadoop MapReduce
The problem of exact probabilistic inference in an arbitrary Bayes network is NP-hard. The process is time consuming and complex. To speed up the processing, we need to run parts of the subnetwork in parallel. This work addresses the application of a MapReduce based distributed computing framework, Hadoop, to Bayesian network model to speed up the Bayesian update and inference processes. We present an analytical framework for understanding the transformation of Bayesian network model to Map and Reduce tasks. Computer-based Patient Case Simulation System (422 nodes) is chosen as a case study for the transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信