社交媒体Twitter在糖尿病干预中的应用

Medit Leonard, Bethzy Williams
{"title":"社交媒体Twitter在糖尿病干预中的应用","authors":"Medit Leonard, Bethzy Williams","doi":"10.52152/spr/2021.119","DOIUrl":null,"url":null,"abstract":"Social networking sites have been a common forum for exchanging health-related insights and information. This study aims to look at Twitter use in the intervention of diabetes. Specifically, utilising a prior analysis as a reference, we use a revised approach to analyse trends in the existing use of hash-tags, trending hash-tags, and the incidence of diabetes-related tweets. Our findings indicate that the diabetes population on Twitter has grown significantly over time, as well as proof that this community is becoming more capable of spreading diabetes-related health information. An enhanced system for storing, cleaning, and reviewing Twitter data relevant to diabetes, as well as the use of regular expressions to categorise subsets of tweets, are among our computational contributions. To recognise tweets from diabetic patients, we built a model focused on word embedding and long short- term memory.","PeriodicalId":162349,"journal":{"name":"Science Progress and Research","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Usage of social media Twitter in the Intervention of Diabetes Mellitus\",\"authors\":\"Medit Leonard, Bethzy Williams\",\"doi\":\"10.52152/spr/2021.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social networking sites have been a common forum for exchanging health-related insights and information. This study aims to look at Twitter use in the intervention of diabetes. Specifically, utilising a prior analysis as a reference, we use a revised approach to analyse trends in the existing use of hash-tags, trending hash-tags, and the incidence of diabetes-related tweets. Our findings indicate that the diabetes population on Twitter has grown significantly over time, as well as proof that this community is becoming more capable of spreading diabetes-related health information. An enhanced system for storing, cleaning, and reviewing Twitter data relevant to diabetes, as well as the use of regular expressions to categorise subsets of tweets, are among our computational contributions. To recognise tweets from diabetic patients, we built a model focused on word embedding and long short- term memory.\",\"PeriodicalId\":162349,\"journal\":{\"name\":\"Science Progress and Research\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Progress and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52152/spr/2021.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52152/spr/2021.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

社交网站一直是交流与健康有关的见解和信息的公共论坛。这项研究旨在观察Twitter的使用对糖尿病的干预作用。具体而言,利用先前的分析作为参考,我们使用修订后的方法来分析现有使用的hashtag,趋势hashtag和糖尿病相关推文的发生率的趋势。我们的研究结果表明,随着时间的推移,Twitter上的糖尿病人口显著增长,也证明了这个社区正变得越来越有能力传播与糖尿病相关的健康信息。一个用于存储、清理和审查与糖尿病相关的Twitter数据的增强系统,以及使用正则表达式对tweet子集进行分类,都是我们在计算方面的贡献。为了识别糖尿病患者的推文,我们建立了一个基于词嵌入和长短期记忆的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Usage of social media Twitter in the Intervention of Diabetes Mellitus
Social networking sites have been a common forum for exchanging health-related insights and information. This study aims to look at Twitter use in the intervention of diabetes. Specifically, utilising a prior analysis as a reference, we use a revised approach to analyse trends in the existing use of hash-tags, trending hash-tags, and the incidence of diabetes-related tweets. Our findings indicate that the diabetes population on Twitter has grown significantly over time, as well as proof that this community is becoming more capable of spreading diabetes-related health information. An enhanced system for storing, cleaning, and reviewing Twitter data relevant to diabetes, as well as the use of regular expressions to categorise subsets of tweets, are among our computational contributions. To recognise tweets from diabetic patients, we built a model focused on word embedding and long short- term memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信