基于自适应滤波和BP神经网络的城市用水量联合预测模型

F. Ban, Dan Wu, Yueming Hei
{"title":"基于自适应滤波和BP神经网络的城市用水量联合预测模型","authors":"F. Ban, Dan Wu, Yueming Hei","doi":"10.1504/IJSHC.2018.10016417","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of improving the precision of urban short-term water consumption forecasting, the idea of combination forecasting is put forward. According to the water use data of a city, the time series prediction method and the explanatory prediction method are used to forecast the water use in the short-term. In order to combine the advantages of the two forecasting methods, this paper proposes a combination forecasting method based on weight coefficient optimisation theory. Compared with the single prediction model, the combined forecasting model has higher accuracy and stability.","PeriodicalId":114223,"journal":{"name":"Int. J. Soc. Humanist. Comput.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Combined forecasting model of urban water consumption based on adaptive filtering and BP neural network\",\"authors\":\"F. Ban, Dan Wu, Yueming Hei\",\"doi\":\"10.1504/IJSHC.2018.10016417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problem of improving the precision of urban short-term water consumption forecasting, the idea of combination forecasting is put forward. According to the water use data of a city, the time series prediction method and the explanatory prediction method are used to forecast the water use in the short-term. In order to combine the advantages of the two forecasting methods, this paper proposes a combination forecasting method based on weight coefficient optimisation theory. Compared with the single prediction model, the combined forecasting model has higher accuracy and stability.\",\"PeriodicalId\":114223,\"journal\":{\"name\":\"Int. J. Soc. Humanist. Comput.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Soc. Humanist. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSHC.2018.10016417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Soc. Humanist. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSHC.2018.10016417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了解决提高城市短期用水量预测精度的问题,提出了组合预测的思路。根据某市用水量数据,采用时间序列预测法和解释预测法对短期用水量进行预测。为了结合两种预测方法的优点,本文提出了一种基于权系数优化理论的组合预测方法。与单一预测模型相比,组合预测模型具有更高的精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined forecasting model of urban water consumption based on adaptive filtering and BP neural network
In order to solve the problem of improving the precision of urban short-term water consumption forecasting, the idea of combination forecasting is put forward. According to the water use data of a city, the time series prediction method and the explanatory prediction method are used to forecast the water use in the short-term. In order to combine the advantages of the two forecasting methods, this paper proposes a combination forecasting method based on weight coefficient optimisation theory. Compared with the single prediction model, the combined forecasting model has higher accuracy and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信