Shazal Irshad, Eric Rozner, Apurv Bhartia, Bo Chen
{"title":"一张图片价值1000毫米:结合视觉和Wi-Fi提高定位","authors":"Shazal Irshad, Eric Rozner, Apurv Bhartia, Bo Chen","doi":"10.1109/WoWMoM57956.2023.00020","DOIUrl":null,"url":null,"abstract":"In the past, researchers designed, deployed, and evaluated Wi-Fi based localization techniques in order to locate users and devices without adding extra or costly infrastructure. However, as infrastructure deployments change, one must reexamine the role of Wi-Fi localization. Today, cameras are becoming increasingly deployed, and therefore this work examines how contextual and vision data obtained from cameras can be integrated with Wi-Fi localization techniques. We present an approach called CALM that works on commodity APs and cameras. Our approach contains several contributions: a camera line fitting technique to restrict the search space of candidate locations, single AP and camera localization via a deprojection scheme inspired from 3D cameras, simple and robust AP weighting that analyzes the context of users via the camera, and a new virtual camera methodology to scale analysis. We motivate our scheme by analyzing real camera and AP topologies from a major vendor. Our evaluation over 9 rooms and 102,300 wireless readings shows CALM can obtain decimeter-level accuracy, improving performance over previous Wi-Fi techniques like FTM by $2.7\\times$ and SpotFi by $2.3\\times$.","PeriodicalId":132845,"journal":{"name":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"369 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Picture is Worth 1,000 Millimeters: Combining Vision and Wi-Fi to Improve Localization\",\"authors\":\"Shazal Irshad, Eric Rozner, Apurv Bhartia, Bo Chen\",\"doi\":\"10.1109/WoWMoM57956.2023.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past, researchers designed, deployed, and evaluated Wi-Fi based localization techniques in order to locate users and devices without adding extra or costly infrastructure. However, as infrastructure deployments change, one must reexamine the role of Wi-Fi localization. Today, cameras are becoming increasingly deployed, and therefore this work examines how contextual and vision data obtained from cameras can be integrated with Wi-Fi localization techniques. We present an approach called CALM that works on commodity APs and cameras. Our approach contains several contributions: a camera line fitting technique to restrict the search space of candidate locations, single AP and camera localization via a deprojection scheme inspired from 3D cameras, simple and robust AP weighting that analyzes the context of users via the camera, and a new virtual camera methodology to scale analysis. We motivate our scheme by analyzing real camera and AP topologies from a major vendor. Our evaluation over 9 rooms and 102,300 wireless readings shows CALM can obtain decimeter-level accuracy, improving performance over previous Wi-Fi techniques like FTM by $2.7\\\\times$ and SpotFi by $2.3\\\\times$.\",\"PeriodicalId\":132845,\"journal\":{\"name\":\"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"volume\":\"369 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM57956.2023.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM57956.2023.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Picture is Worth 1,000 Millimeters: Combining Vision and Wi-Fi to Improve Localization
In the past, researchers designed, deployed, and evaluated Wi-Fi based localization techniques in order to locate users and devices without adding extra or costly infrastructure. However, as infrastructure deployments change, one must reexamine the role of Wi-Fi localization. Today, cameras are becoming increasingly deployed, and therefore this work examines how contextual and vision data obtained from cameras can be integrated with Wi-Fi localization techniques. We present an approach called CALM that works on commodity APs and cameras. Our approach contains several contributions: a camera line fitting technique to restrict the search space of candidate locations, single AP and camera localization via a deprojection scheme inspired from 3D cameras, simple and robust AP weighting that analyzes the context of users via the camera, and a new virtual camera methodology to scale analysis. We motivate our scheme by analyzing real camera and AP topologies from a major vendor. Our evaluation over 9 rooms and 102,300 wireless readings shows CALM can obtain decimeter-level accuracy, improving performance over previous Wi-Fi techniques like FTM by $2.7\times$ and SpotFi by $2.3\times$.