包含时空信息的记录的大规模分布式链接

Dimitrios Karapiperis, A. Gkoulalas-Divanis, Vassilios S. Verykios
{"title":"包含时空信息的记录的大规模分布式链接","authors":"Dimitrios Karapiperis, A. Gkoulalas-Divanis, Vassilios S. Verykios","doi":"10.1109/isc251055.2020.9239003","DOIUrl":null,"url":null,"abstract":"Spatio-temporal information is increasingly made available in modern data sets, together with traditional numerical and categorical attributes. Such information can play a vital role in deciding whether two records, coming from disparate data sources, correspond to the same real-world entity. Linkage of records containing spatio-temporal information requires novel linkage methods and is usually associated with a significant computational overhead. To reduce computational costs, in this paper, we propose the first Spark-based approach for distributed, on-demand, spatio-temporal linkage. Through experimental evaluation, we illustrate that our Spark-based approach achieves (on average) 35% performance improvement compared with the respective Map/Reduce-based implementation.","PeriodicalId":201808,"journal":{"name":"2020 IEEE International Smart Cities Conference (ISC2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Distributed Linkage of Records Containing Spatio-Temporal Information\",\"authors\":\"Dimitrios Karapiperis, A. Gkoulalas-Divanis, Vassilios S. Verykios\",\"doi\":\"10.1109/isc251055.2020.9239003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatio-temporal information is increasingly made available in modern data sets, together with traditional numerical and categorical attributes. Such information can play a vital role in deciding whether two records, coming from disparate data sources, correspond to the same real-world entity. Linkage of records containing spatio-temporal information requires novel linkage methods and is usually associated with a significant computational overhead. To reduce computational costs, in this paper, we propose the first Spark-based approach for distributed, on-demand, spatio-temporal linkage. Through experimental evaluation, we illustrate that our Spark-based approach achieves (on average) 35% performance improvement compared with the respective Map/Reduce-based implementation.\",\"PeriodicalId\":201808,\"journal\":{\"name\":\"2020 IEEE International Smart Cities Conference (ISC2)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Smart Cities Conference (ISC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/isc251055.2020.9239003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isc251055.2020.9239003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现代数据集中,时空信息与传统的数字和分类属性一起越来越多地提供。在决定来自不同数据源的两条记录是否对应于同一个现实世界实体时,此类信息可以发挥至关重要的作用。包含时空信息的记录的链接需要新颖的链接方法,并且通常伴随着显著的计算开销。为了降低计算成本,在本文中,我们提出了第一个基于spark的分布式、按需、时空链接方法。通过实验评估,我们证明了基于spark的方法与相应的基于Map/ reduce的实现相比(平均)实现了35%的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Scale Distributed Linkage of Records Containing Spatio-Temporal Information
Spatio-temporal information is increasingly made available in modern data sets, together with traditional numerical and categorical attributes. Such information can play a vital role in deciding whether two records, coming from disparate data sources, correspond to the same real-world entity. Linkage of records containing spatio-temporal information requires novel linkage methods and is usually associated with a significant computational overhead. To reduce computational costs, in this paper, we propose the first Spark-based approach for distributed, on-demand, spatio-temporal linkage. Through experimental evaluation, we illustrate that our Spark-based approach achieves (on average) 35% performance improvement compared with the respective Map/Reduce-based implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信