{"title":"严重塑性变形镁基合金","authors":"Ramesh Kumar Subramanian, Arun Kumar Srirangan, SreeArravind Mani","doi":"10.5772/intechopen.88778","DOIUrl":null,"url":null,"abstract":"Magnesium can be replaced with materials which experience strain controlled fatigue in their respective applications. Still, there are infrequent predicaments with utilizing magnesium alloys, comprising lower strength, fatigue life, ductility, tough-ness, and creep resistant attributes correlate with aluminum alloys. Some recent studies have been affirming that through the severe plastic deformation process, particularly equal-channel angular pressing (ECAP) method promotes very significant ultra-grain refinement in bulk solids, which enhances the mechanical properties. ECAP with a 90° clockwise rotation around the billet axis between consecutive passes in route B C has improved the ductile characteristics with increased yield strength and rate of elongation which leads to a greater fatigue life because ultra-fine grain refinement can be able to resist the crack propagations. To attain the plasticity at higher temperature magnesium and its alloys are required to undergo extrusion operation before proceeding to the multiple pass ECAP at 200°C because the magnesium alloys exhibit a limited number of slip systems due to its hexagonal crystal structure.","PeriodicalId":135960,"journal":{"name":"Magnesium - The Wonder Element for Engineering/Biomedical Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Severely Plastic Deformed Magnesium Based Alloys\",\"authors\":\"Ramesh Kumar Subramanian, Arun Kumar Srirangan, SreeArravind Mani\",\"doi\":\"10.5772/intechopen.88778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnesium can be replaced with materials which experience strain controlled fatigue in their respective applications. Still, there are infrequent predicaments with utilizing magnesium alloys, comprising lower strength, fatigue life, ductility, tough-ness, and creep resistant attributes correlate with aluminum alloys. Some recent studies have been affirming that through the severe plastic deformation process, particularly equal-channel angular pressing (ECAP) method promotes very significant ultra-grain refinement in bulk solids, which enhances the mechanical properties. ECAP with a 90° clockwise rotation around the billet axis between consecutive passes in route B C has improved the ductile characteristics with increased yield strength and rate of elongation which leads to a greater fatigue life because ultra-fine grain refinement can be able to resist the crack propagations. To attain the plasticity at higher temperature magnesium and its alloys are required to undergo extrusion operation before proceeding to the multiple pass ECAP at 200°C because the magnesium alloys exhibit a limited number of slip systems due to its hexagonal crystal structure.\",\"PeriodicalId\":135960,\"journal\":{\"name\":\"Magnesium - The Wonder Element for Engineering/Biomedical Applications\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnesium - The Wonder Element for Engineering/Biomedical Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.88778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnesium - The Wonder Element for Engineering/Biomedical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.88778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnesium can be replaced with materials which experience strain controlled fatigue in their respective applications. Still, there are infrequent predicaments with utilizing magnesium alloys, comprising lower strength, fatigue life, ductility, tough-ness, and creep resistant attributes correlate with aluminum alloys. Some recent studies have been affirming that through the severe plastic deformation process, particularly equal-channel angular pressing (ECAP) method promotes very significant ultra-grain refinement in bulk solids, which enhances the mechanical properties. ECAP with a 90° clockwise rotation around the billet axis between consecutive passes in route B C has improved the ductile characteristics with increased yield strength and rate of elongation which leads to a greater fatigue life because ultra-fine grain refinement can be able to resist the crack propagations. To attain the plasticity at higher temperature magnesium and its alloys are required to undergo extrusion operation before proceeding to the multiple pass ECAP at 200°C because the magnesium alloys exhibit a limited number of slip systems due to its hexagonal crystal structure.