位宽感知寄存器分配和时钟周期最小化绑定

Keisuke Inoue, M. Kaneko
{"title":"位宽感知寄存器分配和时钟周期最小化绑定","authors":"Keisuke Inoue, M. Kaneko","doi":"10.1109/MWSCAS.2015.7282093","DOIUrl":null,"url":null,"abstract":"With the growing scale of integration, it is demand for next-generation VLSI design to consider not only the number of resources, but also the bitwidths of them. Removing wasted bits of resources, the area and power costs are optimized rather than conventional design. This paper shows that intentional clock skew (useful clock skew) is effective to improve the performance of bitwidth-aware circuits, and formulates a novel problem of clock skew scheduling to minimize the clock period during register allocation and binding under the total bitwidth constraint. A mixed integer linear programming-based approach is presented to formally draw up the problem. Experimental results show that the proposed approach can reduce 9.4% clock period on average over the conventional design.","PeriodicalId":216613,"journal":{"name":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bitwidth-aware register allocation and binding for clock period minimization\",\"authors\":\"Keisuke Inoue, M. Kaneko\",\"doi\":\"10.1109/MWSCAS.2015.7282093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing scale of integration, it is demand for next-generation VLSI design to consider not only the number of resources, but also the bitwidths of them. Removing wasted bits of resources, the area and power costs are optimized rather than conventional design. This paper shows that intentional clock skew (useful clock skew) is effective to improve the performance of bitwidth-aware circuits, and formulates a novel problem of clock skew scheduling to minimize the clock period during register allocation and binding under the total bitwidth constraint. A mixed integer linear programming-based approach is presented to formally draw up the problem. Experimental results show that the proposed approach can reduce 9.4% clock period on average over the conventional design.\",\"PeriodicalId\":216613,\"journal\":{\"name\":\"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2015.7282093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2015.7282093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着集成规模的不断扩大,下一代VLSI设计不仅需要考虑资源的数量,还需要考虑资源的位宽。消除了浪费的资源,优化了面积和电力成本,而不是传统的设计。本文论证了有意的时钟倾斜(有用的时钟倾斜)对提高位宽感知电路的性能是有效的,并提出了一种新的时钟倾斜调度问题,以在总位宽约束下最小化寄存器分配和绑定过程中的时钟周期。提出了一种基于混合整数线性规划的方法来形式化地描述该问题。实验结果表明,该方法比传统设计平均减少9.4%的时钟周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bitwidth-aware register allocation and binding for clock period minimization
With the growing scale of integration, it is demand for next-generation VLSI design to consider not only the number of resources, but also the bitwidths of them. Removing wasted bits of resources, the area and power costs are optimized rather than conventional design. This paper shows that intentional clock skew (useful clock skew) is effective to improve the performance of bitwidth-aware circuits, and formulates a novel problem of clock skew scheduling to minimize the clock period during register allocation and binding under the total bitwidth constraint. A mixed integer linear programming-based approach is presented to formally draw up the problem. Experimental results show that the proposed approach can reduce 9.4% clock period on average over the conventional design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信