一种新的在异常值和系统不确定性下的鲁棒卡尔曼滤波算法

S. Chan, Zhiguo Zhang, K. Tse
{"title":"一种新的在异常值和系统不确定性下的鲁棒卡尔曼滤波算法","authors":"S. Chan, Zhiguo Zhang, K. Tse","doi":"10.1109/ISCAS.2005.1465586","DOIUrl":null,"url":null,"abstract":"This paper proposes a new robust Kalman filter algorithm under outliers and system uncertainties. The robust Kalman filter of Durovic and Kovacevic (1999) is extended to include unknown-but-bounded parameter uncertainties in the state or observation matrix. We first formulate the robust state estimation problem as an M-estimation problem, which leads to an unconstrained nonlinear optimization problem. This is then linearized and solved iteratively as a series of linear least-squares problems. These least-squares problems are subject to the bounded system uncertainties using the robust least squares method proposed by A. Ben-Tal and A. Nemirovski (2001). Simulation results show that the new algorithm leads to a better performance than the conventional algorithms under outliers as well as system uncertainties.","PeriodicalId":191200,"journal":{"name":"2005 IEEE International Symposium on Circuits and Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"A new robust Kalman filter algorithm under outliers and system uncertainties\",\"authors\":\"S. Chan, Zhiguo Zhang, K. Tse\",\"doi\":\"10.1109/ISCAS.2005.1465586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new robust Kalman filter algorithm under outliers and system uncertainties. The robust Kalman filter of Durovic and Kovacevic (1999) is extended to include unknown-but-bounded parameter uncertainties in the state or observation matrix. We first formulate the robust state estimation problem as an M-estimation problem, which leads to an unconstrained nonlinear optimization problem. This is then linearized and solved iteratively as a series of linear least-squares problems. These least-squares problems are subject to the bounded system uncertainties using the robust least squares method proposed by A. Ben-Tal and A. Nemirovski (2001). Simulation results show that the new algorithm leads to a better performance than the conventional algorithms under outliers as well as system uncertainties.\",\"PeriodicalId\":191200,\"journal\":{\"name\":\"2005 IEEE International Symposium on Circuits and Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2005.1465586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2005.1465586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

提出了一种新的鲁棒卡尔曼滤波算法。将Durovic和Kovacevic(1999)的鲁棒卡尔曼滤波扩展到包含状态或观测矩阵中未知但有界的参数不确定性。我们首先将鲁棒状态估计问题表述为m估计问题,这导致了一个无约束的非线性优化问题。然后将其线性化并迭代求解为一系列线性最小二乘问题。使用A. Ben-Tal和A. Nemirovski(2001)提出的鲁棒最小二乘法,这些最小二乘问题受制于有界系统不确定性。仿真结果表明,在异常值和系统不确定性条件下,新算法比传统算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new robust Kalman filter algorithm under outliers and system uncertainties
This paper proposes a new robust Kalman filter algorithm under outliers and system uncertainties. The robust Kalman filter of Durovic and Kovacevic (1999) is extended to include unknown-but-bounded parameter uncertainties in the state or observation matrix. We first formulate the robust state estimation problem as an M-estimation problem, which leads to an unconstrained nonlinear optimization problem. This is then linearized and solved iteratively as a series of linear least-squares problems. These least-squares problems are subject to the bounded system uncertainties using the robust least squares method proposed by A. Ben-Tal and A. Nemirovski (2001). Simulation results show that the new algorithm leads to a better performance than the conventional algorithms under outliers as well as system uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信