基于深度学习LSTM的勒索软件检测

Sumith Maniath, Aravind Ashok, P. Poornachandran, V. Sujadevi, A. Sankar, Srinath Jan
{"title":"基于深度学习LSTM的勒索软件检测","authors":"Sumith Maniath, Aravind Ashok, P. Poornachandran, V. Sujadevi, A. Sankar, Srinath Jan","doi":"10.1109/RDCAPE.2017.8358312","DOIUrl":null,"url":null,"abstract":"There is a growing interest in academia and industry to employ dynamic analysis for automating malwares analysis. In dynamic analysis, Application Programming Interface (API) calls made by the executable is a promising source to identify the behavior of an application. The list of API calls made by a process can be considered as a word sequence. This work aims to detect ransomware behavior by employing Long-Short Term Memory (LSTM) networks for binary sequence classification of API calls. We present an automated approach to extract API calls from the log of modified sandbox environment and detect ransomware behavior. The proposed approach is expected to improve the automated analysis of large volume of malwares samples.","PeriodicalId":442235,"journal":{"name":"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Deep learning LSTM based ransomware detection\",\"authors\":\"Sumith Maniath, Aravind Ashok, P. Poornachandran, V. Sujadevi, A. Sankar, Srinath Jan\",\"doi\":\"10.1109/RDCAPE.2017.8358312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing interest in academia and industry to employ dynamic analysis for automating malwares analysis. In dynamic analysis, Application Programming Interface (API) calls made by the executable is a promising source to identify the behavior of an application. The list of API calls made by a process can be considered as a word sequence. This work aims to detect ransomware behavior by employing Long-Short Term Memory (LSTM) networks for binary sequence classification of API calls. We present an automated approach to extract API calls from the log of modified sandbox environment and detect ransomware behavior. The proposed approach is expected to improve the automated analysis of large volume of malwares samples.\",\"PeriodicalId\":442235,\"journal\":{\"name\":\"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RDCAPE.2017.8358312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RDCAPE.2017.8358312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

学术界和工业界对使用动态分析来自动化恶意软件分析越来越感兴趣。在动态分析中,由可执行程序进行的应用程序编程接口(API)调用是识别应用程序行为的一个很有前途的来源。进程调用的API列表可以看作是一个字序列。这项工作旨在通过使用长短期记忆(LSTM)网络对API调用进行二进制序列分类来检测勒索软件行为。我们提出了一种从修改沙箱环境的日志中提取API调用并检测勒索软件行为的自动化方法。所提出的方法有望提高对大量恶意软件样本的自动化分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning LSTM based ransomware detection
There is a growing interest in academia and industry to employ dynamic analysis for automating malwares analysis. In dynamic analysis, Application Programming Interface (API) calls made by the executable is a promising source to identify the behavior of an application. The list of API calls made by a process can be considered as a word sequence. This work aims to detect ransomware behavior by employing Long-Short Term Memory (LSTM) networks for binary sequence classification of API calls. We present an automated approach to extract API calls from the log of modified sandbox environment and detect ransomware behavior. The proposed approach is expected to improve the automated analysis of large volume of malwares samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信