{"title":"MNiSn (M=Zr, Hf)的高温热电性能","authors":"B. Cook, G. Meisner, J. Yang, C. Uher","doi":"10.1109/ICT.1999.843335","DOIUrl":null,"url":null,"abstract":"The high temperature transport properties in a series of intermetallic half-Heusler alloys of the form MNiSn, where M=Zr, Hf, have been examined. The semiconducting nature of these materials due to the formation of a pseudo-gap in the density of states make them promising candidates for intermediate temperature thermoelectric applications. Samples of pure and Sb-doped ZrNiSn, HfNiSn, and (Zr-Hf)NiSn were prepared by arc melting and homogenized by heat treatment. Phase purity was determined by X-ray diffraction and the microstructures were examined by scanning electron microscopy. The temperature dependence of the electrical resistivity and Seebeck coefficient of these samples was characterized between 300 K and 1050 K. At room temperature, the data match closely with the results recently reported by us. The thermopower initially increases with temperature, exhibits a broad maximum between 400 K and 600 K, and decreases to a common value, characteristic of the magnitude of the forbidden gap. The electrical resistivity decreases with temperature following a T/sup -1/ dependence. A correlation between the magnitude of the thermopower and the Hf/Zr ratio was observed. An estimate of the magnitude of the gap was made from a plot of 1n(/spl sigma/) versus reciprocal temperature, giving a value of 0.21 eV which is in good agreement with previous estimates. The effects of antimony and bismuth doping on the electrical properties are discussed.","PeriodicalId":253439,"journal":{"name":"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"High temperature thermoelectric properties of MNiSn (M=Zr, Hf)\",\"authors\":\"B. Cook, G. Meisner, J. Yang, C. Uher\",\"doi\":\"10.1109/ICT.1999.843335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high temperature transport properties in a series of intermetallic half-Heusler alloys of the form MNiSn, where M=Zr, Hf, have been examined. The semiconducting nature of these materials due to the formation of a pseudo-gap in the density of states make them promising candidates for intermediate temperature thermoelectric applications. Samples of pure and Sb-doped ZrNiSn, HfNiSn, and (Zr-Hf)NiSn were prepared by arc melting and homogenized by heat treatment. Phase purity was determined by X-ray diffraction and the microstructures were examined by scanning electron microscopy. The temperature dependence of the electrical resistivity and Seebeck coefficient of these samples was characterized between 300 K and 1050 K. At room temperature, the data match closely with the results recently reported by us. The thermopower initially increases with temperature, exhibits a broad maximum between 400 K and 600 K, and decreases to a common value, characteristic of the magnitude of the forbidden gap. The electrical resistivity decreases with temperature following a T/sup -1/ dependence. A correlation between the magnitude of the thermopower and the Hf/Zr ratio was observed. An estimate of the magnitude of the gap was made from a plot of 1n(/spl sigma/) versus reciprocal temperature, giving a value of 0.21 eV which is in good agreement with previous estimates. The effects of antimony and bismuth doping on the electrical properties are discussed.\",\"PeriodicalId\":253439,\"journal\":{\"name\":\"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.1999.843335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.1999.843335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High temperature thermoelectric properties of MNiSn (M=Zr, Hf)
The high temperature transport properties in a series of intermetallic half-Heusler alloys of the form MNiSn, where M=Zr, Hf, have been examined. The semiconducting nature of these materials due to the formation of a pseudo-gap in the density of states make them promising candidates for intermediate temperature thermoelectric applications. Samples of pure and Sb-doped ZrNiSn, HfNiSn, and (Zr-Hf)NiSn were prepared by arc melting and homogenized by heat treatment. Phase purity was determined by X-ray diffraction and the microstructures were examined by scanning electron microscopy. The temperature dependence of the electrical resistivity and Seebeck coefficient of these samples was characterized between 300 K and 1050 K. At room temperature, the data match closely with the results recently reported by us. The thermopower initially increases with temperature, exhibits a broad maximum between 400 K and 600 K, and decreases to a common value, characteristic of the magnitude of the forbidden gap. The electrical resistivity decreases with temperature following a T/sup -1/ dependence. A correlation between the magnitude of the thermopower and the Hf/Zr ratio was observed. An estimate of the magnitude of the gap was made from a plot of 1n(/spl sigma/) versus reciprocal temperature, giving a value of 0.21 eV which is in good agreement with previous estimates. The effects of antimony and bismuth doping on the electrical properties are discussed.