{"title":"气候变化对土壤微生物群落的影响","authors":"Kumаr Сhirаnjeeb","doi":"10.18782/2583-4770.106","DOIUrl":null,"url":null,"abstract":"Climate change is the most severe problem that adversely affects crop productivity and negatively impacts soil microbial biodiversity, which is considered the key component of soil fertility indicators. Microbial biodiversity regulates all necessary functions to strengthen and maintain the stability of the ecosystem. Climate change primarily affects the crop microclimate, which in turn destroys the ecological balance and disrupts the ideal growth conditions for the crops and hampers the proliferation of microorganisms in the environment, thus decreasing crop production over a particular region. Climate change conditions such as higher temperature, rainfall and other abrupt conditions destroy the equilibrium between microbes, plants and the environment to a large extent, altering the plant-microbe interactions. Higher Carbon dioxide concentration favours the crop in photosynthesis and helps achieve higher productivity. Microbial respiration also enhances the carbon dioxide concentration in the atmosphere, leading to global warming and other potentially hazardous conditions. Mitigation strategies on crop, soil and land management measures are important to counteract the negative impact of climate change.","PeriodicalId":262746,"journal":{"name":"Emerging Trends in Climate Change","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Climatic Change on Soil Microbial Community\",\"authors\":\"Kumаr Сhirаnjeeb\",\"doi\":\"10.18782/2583-4770.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change is the most severe problem that adversely affects crop productivity and negatively impacts soil microbial biodiversity, which is considered the key component of soil fertility indicators. Microbial biodiversity regulates all necessary functions to strengthen and maintain the stability of the ecosystem. Climate change primarily affects the crop microclimate, which in turn destroys the ecological balance and disrupts the ideal growth conditions for the crops and hampers the proliferation of microorganisms in the environment, thus decreasing crop production over a particular region. Climate change conditions such as higher temperature, rainfall and other abrupt conditions destroy the equilibrium between microbes, plants and the environment to a large extent, altering the plant-microbe interactions. Higher Carbon dioxide concentration favours the crop in photosynthesis and helps achieve higher productivity. Microbial respiration also enhances the carbon dioxide concentration in the atmosphere, leading to global warming and other potentially hazardous conditions. Mitigation strategies on crop, soil and land management measures are important to counteract the negative impact of climate change.\",\"PeriodicalId\":262746,\"journal\":{\"name\":\"Emerging Trends in Climate Change\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Trends in Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18782/2583-4770.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Trends in Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18782/2583-4770.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Climatic Change on Soil Microbial Community
Climate change is the most severe problem that adversely affects crop productivity and negatively impacts soil microbial biodiversity, which is considered the key component of soil fertility indicators. Microbial biodiversity regulates all necessary functions to strengthen and maintain the stability of the ecosystem. Climate change primarily affects the crop microclimate, which in turn destroys the ecological balance and disrupts the ideal growth conditions for the crops and hampers the proliferation of microorganisms in the environment, thus decreasing crop production over a particular region. Climate change conditions such as higher temperature, rainfall and other abrupt conditions destroy the equilibrium between microbes, plants and the environment to a large extent, altering the plant-microbe interactions. Higher Carbon dioxide concentration favours the crop in photosynthesis and helps achieve higher productivity. Microbial respiration also enhances the carbon dioxide concentration in the atmosphere, leading to global warming and other potentially hazardous conditions. Mitigation strategies on crop, soil and land management measures are important to counteract the negative impact of climate change.