利用贝叶斯模型融合快速部署备用模拟测试

J. Liaperdos, H. Stratigopoulos, L. Abdallah, Y. Tsiatouhas, A. Arapoyanni, Xin Li
{"title":"利用贝叶斯模型融合快速部署备用模拟测试","authors":"J. Liaperdos, H. Stratigopoulos, L. Abdallah, Y. Tsiatouhas, A. Arapoyanni, Xin Li","doi":"10.7873/DATE.2015.0102","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of limited training sets for learning the regression functions in alternate analog test. Typically, a large volume of real data needs to be collected from different wafers and lots over a long period of time to be able to train the regression functions with accuracy across the whole design space and apply alternate test with high confidence. To avoid this delay and achieve a fast deployment of alternate test, we propose to use the Bayesian model fusion technique that leverages prior knowledge from simulation data and fuses this information with data from few real circuits to draw accurate regression functions across the whole design space. The technique is demonstrated for an alternate test designed for RF low noise amplifiers.","PeriodicalId":162450,"journal":{"name":"2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fast deployment of alternate analog test using Bayesian model fusion\",\"authors\":\"J. Liaperdos, H. Stratigopoulos, L. Abdallah, Y. Tsiatouhas, A. Arapoyanni, Xin Li\",\"doi\":\"10.7873/DATE.2015.0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of limited training sets for learning the regression functions in alternate analog test. Typically, a large volume of real data needs to be collected from different wafers and lots over a long period of time to be able to train the regression functions with accuracy across the whole design space and apply alternate test with high confidence. To avoid this delay and achieve a fast deployment of alternate test, we propose to use the Bayesian model fusion technique that leverages prior knowledge from simulation data and fuses this information with data from few real circuits to draw accurate regression functions across the whole design space. The technique is demonstrated for an alternate test designed for RF low noise amplifiers.\",\"PeriodicalId\":162450,\"journal\":{\"name\":\"2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"234 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2015.0102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2015.0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们解决了交替模拟测试中学习回归函数的有限训练集问题。通常,需要在很长一段时间内从不同的晶圆中收集大量的真实数据,以便能够在整个设计空间中准确地训练回归函数,并以高置信度应用替代测试。为了避免这种延迟并实现替代测试的快速部署,我们建议使用贝叶斯模型融合技术,该技术利用仿真数据中的先验知识,并将该信息与来自少数实际电路的数据融合,从而在整个设计空间中绘制准确的回归函数。该技术在射频低噪声放大器的替代测试中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast deployment of alternate analog test using Bayesian model fusion
In this paper, we address the problem of limited training sets for learning the regression functions in alternate analog test. Typically, a large volume of real data needs to be collected from different wafers and lots over a long period of time to be able to train the regression functions with accuracy across the whole design space and apply alternate test with high confidence. To avoid this delay and achieve a fast deployment of alternate test, we propose to use the Bayesian model fusion technique that leverages prior knowledge from simulation data and fuses this information with data from few real circuits to draw accurate regression functions across the whole design space. The technique is demonstrated for an alternate test designed for RF low noise amplifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信