几个零人,一人和二人博弈的智能策略

M. Andreica, N. Tapus
{"title":"几个零人,一人和二人博弈的智能策略","authors":"M. Andreica, N. Tapus","doi":"10.1109/ICCP.2008.4648380","DOIUrl":null,"url":null,"abstract":"In this paper we present efficient and intelligent strategies for several zero-, one- and two-player games. Most of the games have been studied before or are related to other well-known games, but we present improved algorithmic techniques for playing them optimally. The main techniques we employed are dynamic programming, the Sprague-Grundy game theory and pattern extraction. We also make use of elements from computational geometry, like orthogonal range searching data structures.","PeriodicalId":169031,"journal":{"name":"2008 4th International Conference on Intelligent Computer Communication and Processing","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Intelligent strategies for several zero-, one- and two-player games\",\"authors\":\"M. Andreica, N. Tapus\",\"doi\":\"10.1109/ICCP.2008.4648380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present efficient and intelligent strategies for several zero-, one- and two-player games. Most of the games have been studied before or are related to other well-known games, but we present improved algorithmic techniques for playing them optimally. The main techniques we employed are dynamic programming, the Sprague-Grundy game theory and pattern extraction. We also make use of elements from computational geometry, like orthogonal range searching data structures.\",\"PeriodicalId\":169031,\"journal\":{\"name\":\"2008 4th International Conference on Intelligent Computer Communication and Processing\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 4th International Conference on Intelligent Computer Communication and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2008.4648380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 4th International Conference on Intelligent Computer Communication and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2008.4648380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文给出了几种零人、一人和二人博弈的高效智能策略。大多数游戏之前已经被研究过,或者与其他知名游戏有关,但我们提出了改进的算法技术来优化它们。我们采用的主要技术是动态规划、Sprague-Grundy博弈论和模式提取。我们还利用了计算几何中的元素,比如正交范围搜索数据结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent strategies for several zero-, one- and two-player games
In this paper we present efficient and intelligent strategies for several zero-, one- and two-player games. Most of the games have been studied before or are related to other well-known games, but we present improved algorithmic techniques for playing them optimally. The main techniques we employed are dynamic programming, the Sprague-Grundy game theory and pattern extraction. We also make use of elements from computational geometry, like orthogonal range searching data structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信