车载深度:车载系统的深度预测

A. Angelova, Devesh Yamparala, Justin Vincent, C. Leger
{"title":"车载深度:车载系统的深度预测","authors":"A. Angelova, Devesh Yamparala, Justin Vincent, C. Leger","doi":"10.1109/ECMR.2019.8870943","DOIUrl":null,"url":null,"abstract":"Depth sensing is important for robotics systems for both navigation and manipulation tasks. We here present a learning-based system which predicts accurate scene depth and can take advantage of many types of sensor supervision. We develop an algorithm which combines both supervised and unsupervised constraints to produce high quality depth and which is robust to the presence of noise, sparse sensing, and missing information. Our system is running onboard in realtime, is easy to deploy, and is applicable to a variety of robot platforms.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"OnboardDepth: Depth Prediction for Onboard Systems\",\"authors\":\"A. Angelova, Devesh Yamparala, Justin Vincent, C. Leger\",\"doi\":\"10.1109/ECMR.2019.8870943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth sensing is important for robotics systems for both navigation and manipulation tasks. We here present a learning-based system which predicts accurate scene depth and can take advantage of many types of sensor supervision. We develop an algorithm which combines both supervised and unsupervised constraints to produce high quality depth and which is robust to the presence of noise, sparse sensing, and missing information. Our system is running onboard in realtime, is easy to deploy, and is applicable to a variety of robot platforms.\",\"PeriodicalId\":435630,\"journal\":{\"name\":\"2019 European Conference on Mobile Robots (ECMR)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2019.8870943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

深度传感对于机器人系统的导航和操作任务都很重要。我们在这里提出了一个基于学习的系统,它可以预测准确的场景深度,并可以利用多种类型的传感器监督。我们开发了一种结合了监督约束和无监督约束的算法,以产生高质量的深度,并且对噪声,稀疏感知和缺失信息的存在具有鲁棒性。我们的系统实时运行,易于部署,适用于各种机器人平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OnboardDepth: Depth Prediction for Onboard Systems
Depth sensing is important for robotics systems for both navigation and manipulation tasks. We here present a learning-based system which predicts accurate scene depth and can take advantage of many types of sensor supervision. We develop an algorithm which combines both supervised and unsupervised constraints to produce high quality depth and which is robust to the presence of noise, sparse sensing, and missing information. Our system is running onboard in realtime, is easy to deploy, and is applicable to a variety of robot platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信