L. Angrisani, P. Arpaia, Francesco Donnarumma, Antonio Esposito, Mirco Frosolone, G. Improta, N. Moccaldi, Angela Natalizio, M. Parvis
{"title":"基于干电极的基于运动成像的脑机接口仪器:功能分析","authors":"L. Angrisani, P. Arpaia, Francesco Donnarumma, Antonio Esposito, Mirco Frosolone, G. Improta, N. Moccaldi, Angela Natalizio, M. Parvis","doi":"10.1109/I2MTC43012.2020.9129244","DOIUrl":null,"url":null,"abstract":"The functional analysis of a novel instrumentation for Brain-Computer Interfaces (BCI) is carried out. This consists of a wireless wearable helmet with only 8 dry electrodes. The brain signals to be measured through an electroencephalography are related to the sensorimotor cortex. The final aim is to distinguish between different motor imagery tasks. Furthermore, this analysis also takes into account the discrimination between two executed movements. Features are extracted from the brain signals by means of a Common Spatial Pattern algorithm. Then, two different classifiers are employed to process the brain signals, namely the Random Forest, and the Support Vector Machine with Gaussian kernel. Their performance was compared in terms of classification accuracy and the best accuracy resulted equal to about 80% when distinguishing between left and right imagined movement, classified by means of the Random Forest. The results of this study aim at giving a contribution to the building of wearable BCIs for daily life applications.","PeriodicalId":227967,"journal":{"name":"2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Instrumentation for Motor Imagery-based Brain Computer Interfaces relying on dry electrodes: a functional analysis\",\"authors\":\"L. Angrisani, P. Arpaia, Francesco Donnarumma, Antonio Esposito, Mirco Frosolone, G. Improta, N. Moccaldi, Angela Natalizio, M. Parvis\",\"doi\":\"10.1109/I2MTC43012.2020.9129244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The functional analysis of a novel instrumentation for Brain-Computer Interfaces (BCI) is carried out. This consists of a wireless wearable helmet with only 8 dry electrodes. The brain signals to be measured through an electroencephalography are related to the sensorimotor cortex. The final aim is to distinguish between different motor imagery tasks. Furthermore, this analysis also takes into account the discrimination between two executed movements. Features are extracted from the brain signals by means of a Common Spatial Pattern algorithm. Then, two different classifiers are employed to process the brain signals, namely the Random Forest, and the Support Vector Machine with Gaussian kernel. Their performance was compared in terms of classification accuracy and the best accuracy resulted equal to about 80% when distinguishing between left and right imagined movement, classified by means of the Random Forest. The results of this study aim at giving a contribution to the building of wearable BCIs for daily life applications.\",\"PeriodicalId\":227967,\"journal\":{\"name\":\"2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC43012.2020.9129244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC43012.2020.9129244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Instrumentation for Motor Imagery-based Brain Computer Interfaces relying on dry electrodes: a functional analysis
The functional analysis of a novel instrumentation for Brain-Computer Interfaces (BCI) is carried out. This consists of a wireless wearable helmet with only 8 dry electrodes. The brain signals to be measured through an electroencephalography are related to the sensorimotor cortex. The final aim is to distinguish between different motor imagery tasks. Furthermore, this analysis also takes into account the discrimination between two executed movements. Features are extracted from the brain signals by means of a Common Spatial Pattern algorithm. Then, two different classifiers are employed to process the brain signals, namely the Random Forest, and the Support Vector Machine with Gaussian kernel. Their performance was compared in terms of classification accuracy and the best accuracy resulted equal to about 80% when distinguishing between left and right imagined movement, classified by means of the Random Forest. The results of this study aim at giving a contribution to the building of wearable BCIs for daily life applications.