皮秒时间分辨率的纳米多孔雪崩硒探测器

A. Goldan, J. Rowlands, Ming Lu, Wei Zhao
{"title":"皮秒时间分辨率的纳米多孔雪崩硒探测器","authors":"A. Goldan, J. Rowlands, Ming Lu, Wei Zhao","doi":"10.1109/NSSMIC.2014.7431215","DOIUrl":null,"url":null,"abstract":"For the first time, we propose using amorphous selenium (a-Se) as the photoconductive material for time-of-flight (TOF) detectors. The major drawback of a-Se is its poor time-resolution and low mobility due to shallow-traps, problems that must be circumvented for TOF applications. Thus, we propose a nanopattern multi-well a-Se detector to enable the utilization of both avalanche multiplication gain and unipolar time-differential (UTD) charge sensing in one device. Advantages of avalanche-mode a-Se are having photoconductive gain and band transport in extended states with the highest possible mobility and negligible trapping. Most importantly, UTD charge sensing enables operating the detector at its theoretical limit of charge diffusion. Our simulation results show that UTD charge sensing in avalanche-mode a-Se improves time-resolution by more than 3 orders-of-magnitude and proves very promising to achieve for the first time the ultimate goal of 10 ps time-resolution with a material that is low-cost and uniformly scalable to large-area.","PeriodicalId":144711,"journal":{"name":"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nanopattern multi-well avalanche selenium detector with picosecond time resolution\",\"authors\":\"A. Goldan, J. Rowlands, Ming Lu, Wei Zhao\",\"doi\":\"10.1109/NSSMIC.2014.7431215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, we propose using amorphous selenium (a-Se) as the photoconductive material for time-of-flight (TOF) detectors. The major drawback of a-Se is its poor time-resolution and low mobility due to shallow-traps, problems that must be circumvented for TOF applications. Thus, we propose a nanopattern multi-well a-Se detector to enable the utilization of both avalanche multiplication gain and unipolar time-differential (UTD) charge sensing in one device. Advantages of avalanche-mode a-Se are having photoconductive gain and band transport in extended states with the highest possible mobility and negligible trapping. Most importantly, UTD charge sensing enables operating the detector at its theoretical limit of charge diffusion. Our simulation results show that UTD charge sensing in avalanche-mode a-Se improves time-resolution by more than 3 orders-of-magnitude and proves very promising to achieve for the first time the ultimate goal of 10 ps time-resolution with a material that is low-cost and uniformly scalable to large-area.\",\"PeriodicalId\":144711,\"journal\":{\"name\":\"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2014.7431215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2014.7431215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们首次提出使用非晶硒(a-Se)作为飞行时间(TOF)探测器的光导材料。a-Se的主要缺点是由于浅阱导致的时间分辨率差和低迁移率,这是TOF应用必须避免的问题。因此,我们提出了一种纳米模式多阱a- se探测器,可以在一个器件中同时利用雪崩倍增增益和单极时差(UTD)电荷传感。雪崩模式a-Se的优点是在扩展状态下具有光导增益和能带输运,具有最高的迁移率和可忽略的捕获。最重要的是,UTD电荷传感使探测器能够在电荷扩散的理论极限下运行。我们的仿真结果表明,雪崩模式a- se下的UTD电荷传感将时间分辨率提高了3个数量级以上,并且非常有希望通过低成本和均匀扩展到大面积的材料首次实现10 ps时间分辨率的最终目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanopattern multi-well avalanche selenium detector with picosecond time resolution
For the first time, we propose using amorphous selenium (a-Se) as the photoconductive material for time-of-flight (TOF) detectors. The major drawback of a-Se is its poor time-resolution and low mobility due to shallow-traps, problems that must be circumvented for TOF applications. Thus, we propose a nanopattern multi-well a-Se detector to enable the utilization of both avalanche multiplication gain and unipolar time-differential (UTD) charge sensing in one device. Advantages of avalanche-mode a-Se are having photoconductive gain and band transport in extended states with the highest possible mobility and negligible trapping. Most importantly, UTD charge sensing enables operating the detector at its theoretical limit of charge diffusion. Our simulation results show that UTD charge sensing in avalanche-mode a-Se improves time-resolution by more than 3 orders-of-magnitude and proves very promising to achieve for the first time the ultimate goal of 10 ps time-resolution with a material that is low-cost and uniformly scalable to large-area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信