{"title":"节能操作码设计","authors":"Balaji V. Iyer, Jason A. Poovey, T. Conte","doi":"10.1109/ICCD.2008.4751918","DOIUrl":null,"url":null,"abstract":"Embedded processors are required to achieve high performance while running on batteries. Thus, they must exploit all the possible means available to reduce energy consumption while not sacrificing performance. In this work, one technique to reduce energy is explored to intelligently design the instruction-opcodes of a processor based on a target-workload. The optimization is done using a heuristic that not-only minimizes switching between adjacent instructions, but also simplifies the decoding to reduce latches to save dynamic energy. On average, an optimized opcode is able to be decoded using 40-60% less latches in the decoder. In addition, it is shown that a decoder optimized for algorithms that had similar program structure, similar data-types or similar behavior exhibited consistent patterns of energy reduction. The techniques presented in this paper yield an average 10% reduction in the total dynamic energy. It is also shown that this heuristic can be used to achieve similar results on different issue-width processors.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-aware opcode design\",\"authors\":\"Balaji V. Iyer, Jason A. Poovey, T. Conte\",\"doi\":\"10.1109/ICCD.2008.4751918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded processors are required to achieve high performance while running on batteries. Thus, they must exploit all the possible means available to reduce energy consumption while not sacrificing performance. In this work, one technique to reduce energy is explored to intelligently design the instruction-opcodes of a processor based on a target-workload. The optimization is done using a heuristic that not-only minimizes switching between adjacent instructions, but also simplifies the decoding to reduce latches to save dynamic energy. On average, an optimized opcode is able to be decoded using 40-60% less latches in the decoder. In addition, it is shown that a decoder optimized for algorithms that had similar program structure, similar data-types or similar behavior exhibited consistent patterns of energy reduction. The techniques presented in this paper yield an average 10% reduction in the total dynamic energy. It is also shown that this heuristic can be used to achieve similar results on different issue-width processors.\",\"PeriodicalId\":345501,\"journal\":{\"name\":\"2008 IEEE International Conference on Computer Design\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2008.4751918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Embedded processors are required to achieve high performance while running on batteries. Thus, they must exploit all the possible means available to reduce energy consumption while not sacrificing performance. In this work, one technique to reduce energy is explored to intelligently design the instruction-opcodes of a processor based on a target-workload. The optimization is done using a heuristic that not-only minimizes switching between adjacent instructions, but also simplifies the decoding to reduce latches to save dynamic energy. On average, an optimized opcode is able to be decoded using 40-60% less latches in the decoder. In addition, it is shown that a decoder optimized for algorithms that had similar program structure, similar data-types or similar behavior exhibited consistent patterns of energy reduction. The techniques presented in this paper yield an average 10% reduction in the total dynamic energy. It is also shown that this heuristic can be used to achieve similar results on different issue-width processors.