无铅Sn-3.5Ag钎料与Ni-Sn-P金属化的界面反应

Y. Yang, P. Teh, A. Sumboja, Z. Chen
{"title":"无铅Sn-3.5Ag钎料与Ni-Sn-P金属化的界面反应","authors":"Y. Yang, P. Teh, A. Sumboja, Z. Chen","doi":"10.1109/EPTC.2009.5416457","DOIUrl":null,"url":null,"abstract":"The electrolessly plated Ni-P has been extensively studied due to its coating uniformity, selectivity and low coating stress. However, the use of lead-free solders accelerates interfacial reaction because its higher melting points and higher Sn content than the conventional Pb-Sn solders. In this work, we developed a ternary electroless Ni-Sn-P (7~8 wt.% of P and 1.4 wt.% of Sn) alloy to be used as the soldering metallization. Besides having good solderability, the presence of Sn in electroless Ni-Sn-P changes the diffusion process during soldering reflow. Comparison was made with the results obtained from commercial binary Ni-P (7~8 wt.% of P) metallization. The microstructure of the interfacial IMCs for Ni-P/Sn-3.5Ag and Ni-Sn-P/Sn-3.5Ag solder joints were investigated under different reflow durations at 260 ºC. The diffusion mechanisms of solder reaction for both types of solder joints were discussed. In addition, it was found that the consumption rate of plated Ni-Sn-P layer is faster than that of Ni-P layer up to 30 cycles of reflow at 260 ºC.","PeriodicalId":256843,"journal":{"name":"2009 11th Electronics Packaging Technology Conference","volume":"9 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interface reaction of Pb-free Sn-3.5Ag solder with Ni-Sn-P metallization\",\"authors\":\"Y. Yang, P. Teh, A. Sumboja, Z. Chen\",\"doi\":\"10.1109/EPTC.2009.5416457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrolessly plated Ni-P has been extensively studied due to its coating uniformity, selectivity and low coating stress. However, the use of lead-free solders accelerates interfacial reaction because its higher melting points and higher Sn content than the conventional Pb-Sn solders. In this work, we developed a ternary electroless Ni-Sn-P (7~8 wt.% of P and 1.4 wt.% of Sn) alloy to be used as the soldering metallization. Besides having good solderability, the presence of Sn in electroless Ni-Sn-P changes the diffusion process during soldering reflow. Comparison was made with the results obtained from commercial binary Ni-P (7~8 wt.% of P) metallization. The microstructure of the interfacial IMCs for Ni-P/Sn-3.5Ag and Ni-Sn-P/Sn-3.5Ag solder joints were investigated under different reflow durations at 260 ºC. The diffusion mechanisms of solder reaction for both types of solder joints were discussed. In addition, it was found that the consumption rate of plated Ni-Sn-P layer is faster than that of Ni-P layer up to 30 cycles of reflow at 260 ºC.\",\"PeriodicalId\":256843,\"journal\":{\"name\":\"2009 11th Electronics Packaging Technology Conference\",\"volume\":\"9 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 11th Electronics Packaging Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC.2009.5416457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 11th Electronics Packaging Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2009.5416457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

化学镀Ni-P具有镀层均匀性、选择性和镀层应力低等优点,得到了广泛的研究。然而,由于无铅焊料的熔点和锡含量高于传统的铅锡焊料,无铅焊料的使用加速了界面反应。本文研制了一种三元化学镀镍-锡-磷(P含量为7~ 8wt .%, Sn含量为1.4 wt.%)合金,用于焊接金属化。化学镀Ni-Sn-P中Sn的存在除了具有良好的可焊性外,还改变了焊接回流过程中的扩散过程。并与市售二元Ni-P(含P量7~8 wt.%)金属化所得结果进行了比较。研究了Ni-P/Sn-3.5Ag和Ni-Sn-P/Sn-3.5Ag焊点界面IMCs在260℃回流时间下的微观组织。讨论了两种焊点反应的扩散机理。此外,在260℃下回流30次时,镀Ni-Sn-P层的消耗速度比Ni-P层快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interface reaction of Pb-free Sn-3.5Ag solder with Ni-Sn-P metallization
The electrolessly plated Ni-P has been extensively studied due to its coating uniformity, selectivity and low coating stress. However, the use of lead-free solders accelerates interfacial reaction because its higher melting points and higher Sn content than the conventional Pb-Sn solders. In this work, we developed a ternary electroless Ni-Sn-P (7~8 wt.% of P and 1.4 wt.% of Sn) alloy to be used as the soldering metallization. Besides having good solderability, the presence of Sn in electroless Ni-Sn-P changes the diffusion process during soldering reflow. Comparison was made with the results obtained from commercial binary Ni-P (7~8 wt.% of P) metallization. The microstructure of the interfacial IMCs for Ni-P/Sn-3.5Ag and Ni-Sn-P/Sn-3.5Ag solder joints were investigated under different reflow durations at 260 ºC. The diffusion mechanisms of solder reaction for both types of solder joints were discussed. In addition, it was found that the consumption rate of plated Ni-Sn-P layer is faster than that of Ni-P layer up to 30 cycles of reflow at 260 ºC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信