俄罗斯方块:用于可预测执行静态映射的多应用运行时系统

Andrés Goens, R. Khasanov, J. Castrillón, Marcus Hähnel, Till Smejkal, Hermann Härtig
{"title":"俄罗斯方块:用于可预测执行静态映射的多应用运行时系统","authors":"Andrés Goens, R. Khasanov, J. Castrillón, Marcus Hähnel, Till Smejkal, Hermann Härtig","doi":"10.1145/3078659.3078663","DOIUrl":null,"url":null,"abstract":"For embedded system software, it is common to use static mappings of tasks to cores. This becomes considerably more challenging in multi-application scenarios. In this paper, we propose TETRiS, a multi-application run-time system for static mappings for heterogeneous system-on-chip architectures. It leverages compile-time information to map and migrate tasks in a fashion that preserves the predictable performance of using static mappings, allowing the system to accommodate multiple applications. TETRiS runs on off-the-shelf embedded systems and is Linux-compatible. We embed our approach in a state-of-the-art compiler for multicore systems and evaluate the proposed run-time system in a modern heterogeneous platform using realistic benchmarks. We present two experiments whose execution time and energy consumptions are comparable to those obtained by the highly-optimized Linux scheduler CFS, and where execution time variance is reduced by a factor of 510, and energy consumption variance by a factor of 83.","PeriodicalId":240210,"journal":{"name":"Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"TETRiS: a Multi-Application Run-Time System for Predictable Execution of Static Mappings\",\"authors\":\"Andrés Goens, R. Khasanov, J. Castrillón, Marcus Hähnel, Till Smejkal, Hermann Härtig\",\"doi\":\"10.1145/3078659.3078663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For embedded system software, it is common to use static mappings of tasks to cores. This becomes considerably more challenging in multi-application scenarios. In this paper, we propose TETRiS, a multi-application run-time system for static mappings for heterogeneous system-on-chip architectures. It leverages compile-time information to map and migrate tasks in a fashion that preserves the predictable performance of using static mappings, allowing the system to accommodate multiple applications. TETRiS runs on off-the-shelf embedded systems and is Linux-compatible. We embed our approach in a state-of-the-art compiler for multicore systems and evaluate the proposed run-time system in a modern heterogeneous platform using realistic benchmarks. We present two experiments whose execution time and energy consumptions are comparable to those obtained by the highly-optimized Linux scheduler CFS, and where execution time variance is reduced by a factor of 510, and energy consumption variance by a factor of 83.\",\"PeriodicalId\":240210,\"journal\":{\"name\":\"Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078659.3078663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078659.3078663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

对于嵌入式系统软件,通常使用任务到内核的静态映射。这在多应用程序场景中变得更具挑战性。在本文中,我们提出了一个用于异构片上系统架构的静态映射的多应用运行时系统TETRiS。它利用编译时信息以一种保留使用静态映射的可预测性能的方式映射和迁移任务,从而允许系统容纳多个应用程序。俄罗斯方块运行在现成的嵌入式系统上,并且与linux兼容。我们将我们的方法嵌入到多核系统的最先进的编译器中,并使用现实的基准在现代异构平台中评估建议的运行时系统。我们提出了两个实验,它们的执行时间和能耗与高度优化的Linux调度器CFS相当,并且执行时间方差减少了510倍,能耗方差减少了83倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TETRiS: a Multi-Application Run-Time System for Predictable Execution of Static Mappings
For embedded system software, it is common to use static mappings of tasks to cores. This becomes considerably more challenging in multi-application scenarios. In this paper, we propose TETRiS, a multi-application run-time system for static mappings for heterogeneous system-on-chip architectures. It leverages compile-time information to map and migrate tasks in a fashion that preserves the predictable performance of using static mappings, allowing the system to accommodate multiple applications. TETRiS runs on off-the-shelf embedded systems and is Linux-compatible. We embed our approach in a state-of-the-art compiler for multicore systems and evaluate the proposed run-time system in a modern heterogeneous platform using realistic benchmarks. We present two experiments whose execution time and energy consumptions are comparable to those obtained by the highly-optimized Linux scheduler CFS, and where execution time variance is reduced by a factor of 510, and energy consumption variance by a factor of 83.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信