心肌周期型CNN对心肌拉伸运动心肌梗死的预测

Koki Fukasawa, N. Tanabe, Junya Aoyama, Y. Miyagi
{"title":"心肌周期型CNN对心肌拉伸运动心肌梗死的预测","authors":"Koki Fukasawa, N. Tanabe, Junya Aoyama, Y. Miyagi","doi":"10.1109/iscaie54458.2022.9794531","DOIUrl":null,"url":null,"abstract":"Echocardiography is widely used in the diagnosis of cardiac diseases. Diagnosis requires a high level of skill, and analyzing the exact condition of the heart is very difficult. In this paper, the dynamic changes in the heart due to myocardial infarction are analyzed using optical flow and determined by CNN. Simulations show that the proposed method is effective in estimating the elongation motion movement of myocardial infarction.","PeriodicalId":395670,"journal":{"name":"2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Myocardial infarctions prediction with cardiac cycle type CNN for cardiac stretching exercise\",\"authors\":\"Koki Fukasawa, N. Tanabe, Junya Aoyama, Y. Miyagi\",\"doi\":\"10.1109/iscaie54458.2022.9794531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Echocardiography is widely used in the diagnosis of cardiac diseases. Diagnosis requires a high level of skill, and analyzing the exact condition of the heart is very difficult. In this paper, the dynamic changes in the heart due to myocardial infarction are analyzed using optical flow and determined by CNN. Simulations show that the proposed method is effective in estimating the elongation motion movement of myocardial infarction.\",\"PeriodicalId\":395670,\"journal\":{\"name\":\"2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iscaie54458.2022.9794531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iscaie54458.2022.9794531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超声心动图广泛应用于心脏疾病的诊断。诊断需要高水平的技术,分析心脏的确切状况非常困难。本文利用光流分析心肌梗死后心脏的动态变化,并由CNN确定。仿真结果表明,该方法可以有效地估计心肌梗死的伸长运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Myocardial infarctions prediction with cardiac cycle type CNN for cardiac stretching exercise
Echocardiography is widely used in the diagnosis of cardiac diseases. Diagnosis requires a high level of skill, and analyzing the exact condition of the heart is very difficult. In this paper, the dynamic changes in the heart due to myocardial infarction are analyzed using optical flow and determined by CNN. Simulations show that the proposed method is effective in estimating the elongation motion movement of myocardial infarction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信