ARMA-EGARCH模型构建与实证研究

Bo Zhang, Zhong-min Yin
{"title":"ARMA-EGARCH模型构建与实证研究","authors":"Bo Zhang, Zhong-min Yin","doi":"10.1109/GSIS.2009.5408171","DOIUrl":null,"url":null,"abstract":"This paper establishes an ARMA-EGARCH-M model by combining ARMA model with ARCH group models to study securities market volatility appraisal. The results based on examination of measuring indices for forecasting error using mass samples indicate that ARMA-EGARCH-M model surpasses ARCH group models on Shanghai securities market volatility fitting. To solve the fluctuation cluster and continuance, it's suggested to establish a short sales trading mechanism in the market.","PeriodicalId":294363,"journal":{"name":"2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model construction and empirical study of ARMA-EGARCH\",\"authors\":\"Bo Zhang, Zhong-min Yin\",\"doi\":\"10.1109/GSIS.2009.5408171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes an ARMA-EGARCH-M model by combining ARMA model with ARCH group models to study securities market volatility appraisal. The results based on examination of measuring indices for forecasting error using mass samples indicate that ARMA-EGARCH-M model surpasses ARCH group models on Shanghai securities market volatility fitting. To solve the fluctuation cluster and continuance, it's suggested to establish a short sales trading mechanism in the market.\",\"PeriodicalId\":294363,\"journal\":{\"name\":\"2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSIS.2009.5408171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSIS.2009.5408171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将ARMA模型与ARCH群模型相结合,建立了ARMA- egarch - m模型来研究证券市场波动率的评估。基于质量样本预测误差度量指标检验的结果表明,ARMA-EGARCH-M模型在上海证券市场波动拟合上优于ARCH群模型。为解决波动的集聚性和延续性,建议在市场上建立卖空交易机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model construction and empirical study of ARMA-EGARCH
This paper establishes an ARMA-EGARCH-M model by combining ARMA model with ARCH group models to study securities market volatility appraisal. The results based on examination of measuring indices for forecasting error using mass samples indicate that ARMA-EGARCH-M model surpasses ARCH group models on Shanghai securities market volatility fitting. To solve the fluctuation cluster and continuance, it's suggested to establish a short sales trading mechanism in the market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信