{"title":"基于深度神经网络的情感分析分类模型","authors":"Donghang Pan, Jingling Yuan, Lin Li, Deming Sheng","doi":"10.1109/BESC48373.2019.8963171","DOIUrl":null,"url":null,"abstract":"The growing prosperity of social networks has brought great challenges to the sentimental tendency mining of users. As more and more researchers pay attention to the sentimental tendency of online users, rich research results have been obtained based on the sentiment classification of explicit texts. However, research on the implicit sentiment of users is still in its infancy. Aiming at the difficulty of implicit sentiment classification, a research on implicit sentiment classification model based on deep neural network is carried out. Classification models based on DNN, LSTM, Bi-LSTM and CNN were established to judge the tendency of the user's implicit sentiment text. Based on the Bi-LSTM model, the classification model of word-level attention mechanism is studied. The experimental results on the public dataset show that the established LSTM series classification model and CNN classification model can achieve good sentiment classification effect, and the classification effect is significantly better than the DNN model. The Bi-LSTM based attention mechanism classification model obtained the optimal R value in the positive category identification.","PeriodicalId":190867,"journal":{"name":"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Deep neural network-based classification model for Sentiment Analysis\",\"authors\":\"Donghang Pan, Jingling Yuan, Lin Li, Deming Sheng\",\"doi\":\"10.1109/BESC48373.2019.8963171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing prosperity of social networks has brought great challenges to the sentimental tendency mining of users. As more and more researchers pay attention to the sentimental tendency of online users, rich research results have been obtained based on the sentiment classification of explicit texts. However, research on the implicit sentiment of users is still in its infancy. Aiming at the difficulty of implicit sentiment classification, a research on implicit sentiment classification model based on deep neural network is carried out. Classification models based on DNN, LSTM, Bi-LSTM and CNN were established to judge the tendency of the user's implicit sentiment text. Based on the Bi-LSTM model, the classification model of word-level attention mechanism is studied. The experimental results on the public dataset show that the established LSTM series classification model and CNN classification model can achieve good sentiment classification effect, and the classification effect is significantly better than the DNN model. The Bi-LSTM based attention mechanism classification model obtained the optimal R value in the positive category identification.\",\"PeriodicalId\":190867,\"journal\":{\"name\":\"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BESC48373.2019.8963171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC48373.2019.8963171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep neural network-based classification model for Sentiment Analysis
The growing prosperity of social networks has brought great challenges to the sentimental tendency mining of users. As more and more researchers pay attention to the sentimental tendency of online users, rich research results have been obtained based on the sentiment classification of explicit texts. However, research on the implicit sentiment of users is still in its infancy. Aiming at the difficulty of implicit sentiment classification, a research on implicit sentiment classification model based on deep neural network is carried out. Classification models based on DNN, LSTM, Bi-LSTM and CNN were established to judge the tendency of the user's implicit sentiment text. Based on the Bi-LSTM model, the classification model of word-level attention mechanism is studied. The experimental results on the public dataset show that the established LSTM series classification model and CNN classification model can achieve good sentiment classification effect, and the classification effect is significantly better than the DNN model. The Bi-LSTM based attention mechanism classification model obtained the optimal R value in the positive category identification.