{"title":"Si衬底上AlGaN/GaN hemt的击穿机理","authors":"B. Lu, E. Piner, T. Palacios","doi":"10.1109/DRC.2010.5551907","DOIUrl":null,"url":null,"abstract":"AlGaN/GaN high electron mobility transistors (HEMTs) grown on Si substrates have attracted a great interest for power electronics applications. Despite the low cost of the Si substrate, the breakdown voltage (Vbk) of AlGaN/GaN HEMTs grown on Si (less than 600 V for 2 µm total nitride epilayer [1, 4]) is much lower than that grown on SiC (1.9 kV for 2 µm total epi-layer [2]). Although several approaches have been reported to improve Vbk [1, 3 and 4], the breakdown mechanism in these transistors is still not well understood. This paper studies for the first time the breakdown mechanism in AlGaN/GaN HEMTs on Si substrates. In addition, by transferring the AlGaN/GaN HEMTs grown on Si to a glass wafer, we have achieved devices with Vbk in excess of 1.45 kV and specific on-resistance of 5.3 mΩ.cm2.","PeriodicalId":396875,"journal":{"name":"68th Device Research Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Breakdown mechanism in AlGaN/GaN HEMTs on Si substrate\",\"authors\":\"B. Lu, E. Piner, T. Palacios\",\"doi\":\"10.1109/DRC.2010.5551907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AlGaN/GaN high electron mobility transistors (HEMTs) grown on Si substrates have attracted a great interest for power electronics applications. Despite the low cost of the Si substrate, the breakdown voltage (Vbk) of AlGaN/GaN HEMTs grown on Si (less than 600 V for 2 µm total nitride epilayer [1, 4]) is much lower than that grown on SiC (1.9 kV for 2 µm total epi-layer [2]). Although several approaches have been reported to improve Vbk [1, 3 and 4], the breakdown mechanism in these transistors is still not well understood. This paper studies for the first time the breakdown mechanism in AlGaN/GaN HEMTs on Si substrates. In addition, by transferring the AlGaN/GaN HEMTs grown on Si to a glass wafer, we have achieved devices with Vbk in excess of 1.45 kV and specific on-resistance of 5.3 mΩ.cm2.\",\"PeriodicalId\":396875,\"journal\":{\"name\":\"68th Device Research Conference\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"68th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2010.5551907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"68th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2010.5551907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Breakdown mechanism in AlGaN/GaN HEMTs on Si substrate
AlGaN/GaN high electron mobility transistors (HEMTs) grown on Si substrates have attracted a great interest for power electronics applications. Despite the low cost of the Si substrate, the breakdown voltage (Vbk) of AlGaN/GaN HEMTs grown on Si (less than 600 V for 2 µm total nitride epilayer [1, 4]) is much lower than that grown on SiC (1.9 kV for 2 µm total epi-layer [2]). Although several approaches have been reported to improve Vbk [1, 3 and 4], the breakdown mechanism in these transistors is still not well understood. This paper studies for the first time the breakdown mechanism in AlGaN/GaN HEMTs on Si substrates. In addition, by transferring the AlGaN/GaN HEMTs grown on Si to a glass wafer, we have achieved devices with Vbk in excess of 1.45 kV and specific on-resistance of 5.3 mΩ.cm2.