{"title":"基于虚转矩的双足机器人稳定运行速度变化","authors":"J. Cho, J. Yeon, J. Park","doi":"10.1109/ROBIO.2012.6490983","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to generate a stable running trajectory for a biped robot based on virtual torque at the stepping foot for velocity changes. For a velocity change, an external force is necessary, which is generated by moving the ZMP (Zero Moment Point). Moving the ZMP has the same effect as applying a virtual torque at the foot on the ground. By using this method, the velocity of a biped robot can be changed. When a running trajectory for a biped robot is generated based on its model modeled with a single particle, the dynamics of the real robot which has relatively large mass of the swing legs could make the biped robot motion unstable. Based on the gravity-compensated inverted pendulum model with the virtual torque at the stepping foot, a trajectory resulting in stable velocity changes is generated. The effectiveness and the improvements in the performance of the proposed method were shown in computer simulations with a 2D biped robot.","PeriodicalId":426468,"journal":{"name":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stable running velocity change of biped robot based on virtual torque\",\"authors\":\"J. Cho, J. Yeon, J. Park\",\"doi\":\"10.1109/ROBIO.2012.6490983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method to generate a stable running trajectory for a biped robot based on virtual torque at the stepping foot for velocity changes. For a velocity change, an external force is necessary, which is generated by moving the ZMP (Zero Moment Point). Moving the ZMP has the same effect as applying a virtual torque at the foot on the ground. By using this method, the velocity of a biped robot can be changed. When a running trajectory for a biped robot is generated based on its model modeled with a single particle, the dynamics of the real robot which has relatively large mass of the swing legs could make the biped robot motion unstable. Based on the gravity-compensated inverted pendulum model with the virtual torque at the stepping foot, a trajectory resulting in stable velocity changes is generated. The effectiveness and the improvements in the performance of the proposed method were shown in computer simulations with a 2D biped robot.\",\"PeriodicalId\":426468,\"journal\":{\"name\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"03 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2012.6490983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2012.6490983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stable running velocity change of biped robot based on virtual torque
This paper proposes a method to generate a stable running trajectory for a biped robot based on virtual torque at the stepping foot for velocity changes. For a velocity change, an external force is necessary, which is generated by moving the ZMP (Zero Moment Point). Moving the ZMP has the same effect as applying a virtual torque at the foot on the ground. By using this method, the velocity of a biped robot can be changed. When a running trajectory for a biped robot is generated based on its model modeled with a single particle, the dynamics of the real robot which has relatively large mass of the swing legs could make the biped robot motion unstable. Based on the gravity-compensated inverted pendulum model with the virtual torque at the stepping foot, a trajectory resulting in stable velocity changes is generated. The effectiveness and the improvements in the performance of the proposed method were shown in computer simulations with a 2D biped robot.