{"title":"具有时变MIMO信道的LTE应用的硬件模拟器设计","authors":"B. Habib, G. Zaharia, G. El Zein","doi":"10.1109/ICTEA.2012.6462893","DOIUrl":null,"url":null,"abstract":"A hardware simulator facilitates the test and validation cycles by replicating channel artifacts in a controllable and repeatable laboratory environment. This paper presents new frequency domain and time domain architectures of the digital block of a hardware simulator of MIMO propagation channels. The two architectures are tested with LTE standard, in outdoor environment, using time-varying channels. The new architectures of the digital block are presented and designed on a Xilinx Virtex-IV FPGA. Their accuracy and latency are analyzed. The result shows that the architectures produce low occupation on the FPGA and have a small relative error of the output signals.","PeriodicalId":245530,"journal":{"name":"2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware simulator design for LTE applications with time-varying MIMO channels\",\"authors\":\"B. Habib, G. Zaharia, G. El Zein\",\"doi\":\"10.1109/ICTEA.2012.6462893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hardware simulator facilitates the test and validation cycles by replicating channel artifacts in a controllable and repeatable laboratory environment. This paper presents new frequency domain and time domain architectures of the digital block of a hardware simulator of MIMO propagation channels. The two architectures are tested with LTE standard, in outdoor environment, using time-varying channels. The new architectures of the digital block are presented and designed on a Xilinx Virtex-IV FPGA. Their accuracy and latency are analyzed. The result shows that the architectures produce low occupation on the FPGA and have a small relative error of the output signals.\",\"PeriodicalId\":245530,\"journal\":{\"name\":\"2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTEA.2012.6462893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTEA.2012.6462893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hardware simulator design for LTE applications with time-varying MIMO channels
A hardware simulator facilitates the test and validation cycles by replicating channel artifacts in a controllable and repeatable laboratory environment. This paper presents new frequency domain and time domain architectures of the digital block of a hardware simulator of MIMO propagation channels. The two architectures are tested with LTE standard, in outdoor environment, using time-varying channels. The new architectures of the digital block are presented and designed on a Xilinx Virtex-IV FPGA. Their accuracy and latency are analyzed. The result shows that the architectures produce low occupation on the FPGA and have a small relative error of the output signals.