数据挖掘与支持向量回归机器学习在半导体制造中的应用

B. Lenz, Bernd Barak
{"title":"数据挖掘与支持向量回归机器学习在半导体制造中的应用","authors":"B. Lenz, Bernd Barak","doi":"10.1109/HICSS.2013.163","DOIUrl":null,"url":null,"abstract":"Advanced Process Control is an important research area in Semiconductor Manufacturing to improve process stability crucial for product quality. Especially in low-volume-high-mixture fabrication plants, knowledge discovery in databases is extremely challenging due to complex technology mixtures and reduced availability of data for comparable process steps. Thus, actual research focuses on Data Mining using Machine Learning methods to model unknown functional interrelations. High Density Plasma Chemical Vapor Deposition appears to be a process area in semiconductor manufacturing predestinated for application of Data Mining. Promising results have been achieved by implementing statistical models to predict the thickness of dielectric layers deposited onto a metallization layer of the manufactured wafer. This paper describes the approach to predict the layer thickness using a state-of-the-art Machine Learning regression algorithm: Support Vector Regression. The recent extension of Support Vector Machines overcomes pure classification and deals with multivariate nonlinear input data for regression.","PeriodicalId":207610,"journal":{"name":"2013 46th Hawaii International Conference on System Sciences","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Data Mining and Support Vector Regression Machine Learning in Semiconductor Manufacturing to Improve Virtual Metrology\",\"authors\":\"B. Lenz, Bernd Barak\",\"doi\":\"10.1109/HICSS.2013.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced Process Control is an important research area in Semiconductor Manufacturing to improve process stability crucial for product quality. Especially in low-volume-high-mixture fabrication plants, knowledge discovery in databases is extremely challenging due to complex technology mixtures and reduced availability of data for comparable process steps. Thus, actual research focuses on Data Mining using Machine Learning methods to model unknown functional interrelations. High Density Plasma Chemical Vapor Deposition appears to be a process area in semiconductor manufacturing predestinated for application of Data Mining. Promising results have been achieved by implementing statistical models to predict the thickness of dielectric layers deposited onto a metallization layer of the manufactured wafer. This paper describes the approach to predict the layer thickness using a state-of-the-art Machine Learning regression algorithm: Support Vector Regression. The recent extension of Support Vector Machines overcomes pure classification and deals with multivariate nonlinear input data for regression.\",\"PeriodicalId\":207610,\"journal\":{\"name\":\"2013 46th Hawaii International Conference on System Sciences\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 46th Hawaii International Conference on System Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HICSS.2013.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 46th Hawaii International Conference on System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2013.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

先进过程控制是半导体制造领域的一个重要研究领域,其目的是提高对产品质量至关重要的过程稳定性。特别是在小批量高混合的制造工厂,由于复杂的技术混合和可比较工艺步骤的数据可用性降低,数据库中的知识发现极具挑战性。因此,实际研究集中在使用机器学习方法对未知功能相互关系进行建模的数据挖掘上。高密度等离子体化学气相沉积似乎是半导体制造中一个预定应用数据挖掘的工艺领域。通过应用统计模型来预测沉积在金属化层上的介电层的厚度,取得了令人满意的结果。本文描述了使用最先进的机器学习回归算法:支持向量回归来预测层厚度的方法。支持向量机的最新扩展克服了单纯的分类,处理多元非线性输入数据进行回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Mining and Support Vector Regression Machine Learning in Semiconductor Manufacturing to Improve Virtual Metrology
Advanced Process Control is an important research area in Semiconductor Manufacturing to improve process stability crucial for product quality. Especially in low-volume-high-mixture fabrication plants, knowledge discovery in databases is extremely challenging due to complex technology mixtures and reduced availability of data for comparable process steps. Thus, actual research focuses on Data Mining using Machine Learning methods to model unknown functional interrelations. High Density Plasma Chemical Vapor Deposition appears to be a process area in semiconductor manufacturing predestinated for application of Data Mining. Promising results have been achieved by implementing statistical models to predict the thickness of dielectric layers deposited onto a metallization layer of the manufactured wafer. This paper describes the approach to predict the layer thickness using a state-of-the-art Machine Learning regression algorithm: Support Vector Regression. The recent extension of Support Vector Machines overcomes pure classification and deals with multivariate nonlinear input data for regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信